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Abstract. The topic of determining informative 

predictors, forming rational exogenous variables, 

substantiating the dimension and structure of pre-

dictor spaces is considered. The purpose of design 

and selection of characteristics is to prevent the ef-

fect of retraining, reduce the dimension in studying 

the processes apart from a master, build classifiers, 

reflect the process of dividing data into classes and 

determine the boundaries of solutions in limited 

space, as well as reasonable interpretation, provide 

in-depth understanding of the model and data for 

studying, visualization in spaces, the dimension of 

which is perceived by the researcher. The design 

predictor spaces and develop effective procedures 

problems for estimating the parameters of econo-

metric models with multicollinear variables are de-

veloped. The study was made under alternative ap-

proaches to form the interdependencies models 

features. 

A mathematical toolkit is proposed for calculat-

ing the parameters of a linear econometric model 

in case of rank deficient observation matrix, based 

on the study of singular expansions. 

Using a singular toolkit for decomposing and 

analyzing the data matrix makes it possible to in-

crease the operational efficiency and predictive 

quality of the procedures for estimating economet-

ric models parameters. The mathematical approach 

to the construction of models of the interdepend-

ence of factors is intended to select characteristics 

 

 and construct predictor spaces in the study of sys-

tems with multicollinear variables and rank defi-

cient observation matrix. 
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INTRODUCTION 

 

The multicollinearity problem is relevant 

both for generalizing the factors interdepend-

ence of the complex systems simulation theo-

retical principles, and in terms of the opera-

tional aspect of the research. Applied modeling 

and mathematical description of cause and ef-

fect relationships as a form of regression de-

pendencies is a leading, effective and practi-

cally demanded direction in a wide range of 

applications for solving various behavior anal-

yses of technical, socio-economic, medical and 

biological systems problems. A model tool for 

identifying and formalizing interdependencies 

is used to solve the management problems of 

such systems and their components, in particu-

lar, for functioning regularities determining, 

decision-making support on determining the 

optimal parameters and operating modes, for 

their development trends forecast, as well as 

for justifying the strategies and scenarios of 

their behavior in the condition of uncertainty, 

indeterminacy, conflict, and, as a consequence, 

significant risk of external environment. 

In mathematical model sciences dealing 

with the interdependence of factors, for exam-

ple, engineering, study of operations, econo-

metrics, biometrics etc., classical are consid-

ered the works by D. Farrar, R. Glauber, J. 

Johnston, M. Kendall, L. Klein, M. Bartlett, H. 

Tail, J. Meier, G. Orkat. The scientific works of 

these authors include fundamental results on 

the problems of estimating the parameters of 

regression models, in which, in particular, 

methodological approaches and tools for tak-

ing into account the phenomenon of 

multicollinearity in the input data are devel-

oped. 

Thus, the work of D. Farrar and R. Glauber 

[17] on multicollinearity detection, diagnosis, 

evaluation, consideration and the subsequent 

correction of the design procedures for predic-

tion space in order to eliminate its negative 

consequences is well known in the wide range 

of engineering, natural systems researchers, 

ecologists and econometricians. This work was 

completed in 1965 in cooperation with the In-

stitute for Naval Research, which developed 

theoretical approaches and mathematical mod-

els to analyze the impact of the combination of 

factors on the maintenance condition and the 

cost characteristics functioning systems for-

mation of the Navy. To the set of exogenous 

factors the researchers included, in particular, 

the age of the vessel and its dimensions, the in-

tensity of use in marine logistics and defense 

projects, fuel consumption, the time between 

the scheduled maintenance and their cost. 

Also the set of predictors includes the dis-

crete characteristics of the system, such as the 

type of power plant (steam, diesel, nuclear 

fuel), engine operation, equipment operation 

and maintenance complexity, as well as a 

number of functional and security subsystems 

qualitative parameters for radar patrol, guided 

missiles etc. The spatial samples for the data 

studied were various naval purpose objects, in 

particular, the destroyers of the Atlantic Fleet 

and others. 

Currently, the space of tools and technolo-

gies choice for estimating the models parame-

ters of interdependence of factors is expanding 

intensively. For example, the researchers of the 

applied natural science systems use mostly 

OLS (Ordinary Least Squares), implemented 

in most traditional statistical packages, econ-

ometricians mainly focus on the maximum 

likelihood approaches, and the latest intellec-

tual data analysis and machine study profes-

sionals use the wide range of regression mod-

els regularization. 

It is notable that all these approaches are 

procedurally oriented and are chosen by the 

researchers according to prior arguments. At 

the same time the decision to choose the best 

method for analyzing the interdependence of 

the factors is practically not related to the spe-

cifics of the initial data. 

Today the vast majority of regression tools 

application areas recognize the almost univer-

sal presence of multicollinearity, which is es-

tablished as an indispensable characteristic of 

the data base. Modeling technologies for pa-

rameter estimation offer an advanced tool for 

diagnosing, taking into account and eliminat-

ing the negative effects of this phenomenon, in 

particular, lasso methods, combing regression, 

dimension diminishing, selection of optimal 

subset of variables etc. 
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It is important that in case of the implemen-

tation of the Big Data concept and digital 

economy technologies in reaching the broadest 

scope of human activity and the involvement 

of vast amounts of predominantly unstructured 

information, the relevance of the problem of 

multicollinearity will increase. Thus, the de-

velopment of mathematical procedures for in-

depth study of the mechanisms of interdepend-

encies within the predictor spaces has not only 

an applied demand for forecasting the devel-

opment of complex systems but also a signifi-

cant operational relevance in terms of ensuring 

the adequacy of the constructed models and 

observing the target properties of the parame-

ters estimates. 

Here are the results of generalized ap-

proaches to the estimation of econometric 

models parameters with the multicollinearity 

and the rank deficient observation matrix, 

which were previously studied by the authors 

in a number of scientific works [5 − 7]. 

1. Let there be a linear relationship between 

the variable Y  and m explaining the variables 

1 2, ,..., mX X X  and disturbance ε , ε  − the ran-

dom variable, we emphasize that we need only 

the existence of finite moments of the second 

order. 

 

METHODOLOGY 

 

If we have a sample of n observations on 

the modifications of Y  і , 1,2,... ,jX j m then 

we can write 

 
m

j=1

= β +ε , (1, )i ij j iy x i n .  (1) 

 

Equations (1) can be written in the matrix 

form 

 

  Y X ,   (2) 

where 
 

1 11 12 1

2 21 22 2

1 2

, ,

m

m

n n n nm

y x x x

y x x x
Y X

y x x x

   
   
    
   
   
   

 

1 1

2 2

m n

β ε

β ε
β= , ε=

β ε

   
   
   
   
   
   

 

 

Through X  and ε  we denote the matrices 

transposed to X and ε , respectively. 

Let the conditions be: 

 

1. ε 0;M                (3) 

2. 2( ) ,M E   − unit matrix;            (4) 

3. X  − matrix whose elements are deter-

ministic numbers    (5) 

4. X  range = m (matrix − X  full rank)   (6) 

 

The task (1 − 5) was considered by many 

authors [1, 2]. First of all, we give a very un-

derstandable version in the book of 

Wetherburg [13] and Davies [11]. Especially 

useful are the books of Plackett [12, 14] and 

Voyevodin [3]. 

The case when the condition (3) is not ful-

filled was considered in [9] with M 0  . 

There is some compromise between the bias 

value β̂ and value ( )D  . Case when [2] is not 

fulfilled was considered by Aitken [10], who 

proposed a generalized least squares method 

on the condition that matrix X  is of the full 

rank. In this study Aitken's method extends to 

task (1, 2), provided that (6) is not fulfilled, 

but takes place 

 

rangX t m    ( 6 ) 

 

at the same time takes place 

 
2( )M D W    ,  (4 )  

 

where 2  is an unknown parameter, and D , w 

– are known symmetrically positive defined 

matrices of order n n . Then D  admits the 

representation D PP , where the non-

developed matrix P  is positively determined. 

So D PP  that -1 -1P DP E and 
-1 -1 -1P P D . Let's denote -1P B . D  com-

mutes with B . 

From (4)  follows 
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-1 -1 2W D  , -1 2W BB BB   . 

 

So the matrix of covariance 

 
2

1 1 2 12 1 1

2

1 2 12 2 2 2

2

1 1 2 2

2

( )

,

n n

n n

n n n n n

M

W

       
 
         
 
 
       

 

 

 

where 2 2

i i iM Dy    − dispersion iy ,  

    covi j ij i j i jM y y        − covariance iy  

and jy . W  – the known weight matrix. 

Let the vectors of the basis 

1 2 1, ,..., me e e H  − the linear space 1H  set in 

certain matching vectors 1 2, ,..., mf f f  of linear 

space 2H . Then there exists a linear operator 

X operating with 1H  in 2H , which translates 

each vector ke  into a corresponding one vector 

1

n

k i ki

i

Xe f


  . We can determine the operator 

X by equality 

 

.

k k k k

k k

k ki i i ki k

k i i k

X X e Xe

f f

     

    

 

   
 (7) 

 

Between the linear operators X  and the 

matrices kiα  there is a one-to-one corre-

spondence. Since the symbols and properties 

of operations over matrices and operators co-

incide, then any transformation of operator 

equality leads to the same matrix equality. 

Therefore, from a formal point of view, we do 

not care whether we are dealing with matrix or 

operator relations. 

Let's consider rectangular matrices of 

n m dimensions, the rank of which coincides 

with the minimum from numbers ,m n . Such 

matrices are called full rank matrices. Their 

characteristic feature is that they do not change 

their rank under any small disturbances. Sys-

tems of linear algebraic equations with full 

rank matrices have much in common with the 

non-degenerate matrices systems. 

Let the matrix X  of the system (1 − 6) be a 

full rank matrix. In this case the system may 

be incompatible. Otherwise, it's always com-

patible, but it has not the only solution. 

We will look for a normal pseudo-

connection of the system (1 − 6), that is such 

vector β̂ , which among all the vectors mini-

mizing the functional of the discrepancy 
2

0( )F X Y   has the smallest Euclidean 

norm. 

The invariance of the Euclidean norm to 

unitary transformations allows us to reduce the 

problem of finding normal pseudo-connection 

of the general type system to a simpler task. 

It is easy to verify that the task of determin-

ing normal system pseudo-connection (1) is 

equivalent to the solution of the same problem 

for another system. But transformations can 

always ensure that the matrix is sufficiently 

simple, for example, triangular, normalized, 

trapezoidal etc. On the construct rather effec-

tive numerical methods. 

If any of the methods does not provide the 

necessary accuracy of the solution of linear al-

gebraic equations system, then there is no rea-

son to hope that another method will provide 

the same system with better results. Probably 

such a system can be regarded as unstable. It is 

known [1 − 4] that the pseudo solution of a re-

defined system (2) with a full rank matrix is a 

common solution of the system 

 

X X X y   , 

 

with a square non degenerate matrix X X  of 

order m m . 

Normal solution of the system 

 
1( )X X X y   . 

 

It is necessary to demand 

2

1

min
m

i

i

  .   (8) 

Definition 1. The matrix ( )X m n   is 

called the Moore-Penrose pseudo inverse for 

matrix X  if it satisfies the following four con-
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ditions: 

 

1 X XX X    

2 XX X X   

3 XX   − symmetric, 

4 X X  − symmetric.   (9) 

 

From (9) condition follows 

 

X XX X X XX X X X        , 

 

if 
1X X P  , then 2

1 1P P . 

In addition, from condition 4 
1P  is symmet-

ric. So 1P  − orthoprojector. Similarly 

2XX P   − orthoprojector. 

It can be proved that such a matrix X  al-

ways exists and is unique [2]. If X  is a non-

degenerate square matrix, then it obviously 

satisfies the conditions (1 − 4), if X  is rectan-

gular and has a full rank, then 
1( ) .X X X X    It can be verified that the 

pseudo inverse to diagonal n m  matrix 

 

1

2

0 0

0 0

0 0 0

0 0 0

m

 
 


 
 
 

  
 
 
 
 
 

 , 

 

is a diagonal m n matrix. 

 

1

2

0 0 0 0

0

0 0 0 0m



 
 
 
 
 

 

 , (10) 

 

where 

1

1

1

1

1
, 0

0, 0


 


  

  


. 

 

Further we use [3] a singular matrix X  [3] 

 

X U V   ,  (11) 

 

where U  is the orthogonal n n  matrix, V   

is the orthogonal m m  matrix, and  − the 

diagonal matrix, at which ij  = 0 for, i j , 

ij  = 0.i   Columns of the matrix U  are the 

intrinsic vectors of the matrix XX  , and the 

columns of the matrix V  are the vectors of the 

matrix XX  . Using (9), [2, 3] we obtain 

 

X V U
   . 

 

RESULTS 

 

The estimates of the least squares of the pa-

rameter  in (1) are defined as values 

1 2,  , ,  ,m    minimizing 

 

1 1

( )

( )( )

min,

n n

i ij j k kj j ik

i k j j

L y x y x
 



     



   
   (12) 

 

where the matrix ikA    is a symmetric 

positive definite matrix. 

Solution (12) 1 2,  , ,  m    we will call 

task pseudo-solution (1 − 2). The solution will 

be linear towards y. In addition, under the con-

dition (3), 1P  will be unbiased estimate 1P  

in (1). That is 

 

1 1( )M P P   .  (13) 

 

The solution in general will not be the only 

one. We will require that the minimum was the 

amount (8). Then the solution (12) is unam-

biguous. 

2. Let be given two linear real Euclidean 

spaces 1 2,H H and a linear operator X  operat-

ing with 1H in 2H . Operator *X , acting with 

2H in 1H , conjugates to X . Then for arbitrary 

vectors 1H and 2y H equality is per-
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formed 

 

( , , ) ( , )X y X y   .  (14) 

 

For any arbitrary operator X  there is a con-

jugate operator *X , and thus it is only one. We 

choose in 1H
 

an orthonormal basis 

1 2, , , me e e . Then for every one 1H  there 

is a schedule 

 

1

( )
m

k k

k

e e


   .  (15) 

 

Applying (15) to *X y  we get 

 

1

( , )
m

k k

k

X y X y e e 



 . 

 

Then, taking into account (14) 

 

1

( , )
m

k k

k

X y y Xe e



 . 

 

Definition 1. The linear operator B acting 

in 2H is called self-directed (symmetric), if for 

any 1 2 2 1 2 1 2, ( , ) ( , )y y H By y y By    

Definition 2. If, ( , )By y > 0 for arbi-

trary 2y H , then the operator is positively 

definite. When ( , ) 0By y  , then operator B  is 

called positive. 

Self-directed operator B  corresponds to a 

symmetric matrix B B  . 

Let’s define the operators ,  X BBX BXX B   

that act accordingly in 1 2,H H . 

Operators ,X BBX BXX B   are self-

directed according to 1 2,H H . It is X BBX  

positive in 1H , and the operator BXX B  is 

positive in 2H . 

In fact, for any 1H , 2y H we have 

 

( , ) ( , ) 0X BBX BX BX        

( , ) ( , ) 0BXX By y X By X By    . 

 

Operators *X BBX , *BXX B  are self-

directed, therefore they have a system of or-

thonormal vectors 1 2, , , me e e , which are their 

own vectors for *X BBX and 
1 2, , , nf f f . 

They are the vectors for *BXX B  . 

The operator BX translates the system 

1 2, , , me e e  into some orthogonal system 

1 2, , , mBXe BXe BXe . 

Indeed, 

 

2 2

( , ) ( , )

( , ) ( , ) 0

i j i j

i i j i i j

BXe BXe X BBXe e

e e e e

 

   
 at i j  

2 2( , ) ( , ) ( , )i i i i i i i iBXe BXe X BBXe e e e     . 

 

Consequently k kBXe   , where kρ are the 

singular numbers. 

Therefore, the vector kBXe  is non-zero, 

then and only if the proper value 2

kρ of the op-

erator is not zero. 

The vector *

kX Bf  is the operator's vec-

tor *X BBX . Indeed 

 
2( ) ( )k k k kX BBX X Bf X B BXX B f X B f        

2 2( ) ( ) ( )k k k k k k k kX Bf X Bf BXX Bf f f f       . 

 

Thus non-zero values of operators X BBX  

and BXX B  always coincide. Denote our own 

values through 2 2 2

1 2, , , t   . However, without 

limiting generality 2 2 2

1 2 t, , 0       , and 

the remaining eigenvalues 2

k  are equal to ze-

ro. 

Obviously, the eigenvaluesv of the opera-

tors X BBX , BXX B differ only by the multi-

plicity of the null eigenvalue. Operator 

X BBX  has levels m t , operator BXX B  

has level n t , which are called singular num-

bers of the operator X . 

We take as a basis in 1H  the orthonormal 

system 1 2, , , te e e  of eigenvectors of the oper-

ator X BBX . Then the vectors 1 2, , , te e e  

form a basis in the domain of values X BBX , 

and 1 2, , ,t t me e e  the basis in the core of the 
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operator X BBX . 

1 2, , , nf f f  − orthonormal basis in 1H . As 

1 2, , , tf f f  we take vectors obtained after 

normalization 1 2, , , tBXe BXe BXe . That is 

,  1,2, ,i
i

i

BXe
f i t

BXe
  . Let's take any basis 

in the kernel BXX B . It is clear that 

1 2, , ,t t nf f f   they are their own for the oper-

ator BXX B . Then we have 

 

,

0,

k k

k

f k t

BXe

k t


 


 
 


  (16) 

,

0,

k k

k

e k t

X Bf

k t




 


 
 


,  (17) 

 

1 2, , , me e e , 1 2, , , nf f f  − singular bases. 

Let's have y X e By BX Be     . 

We find a vector for which 

 

( ( )) ( ))

min

B y X B y X

e BBe

    

 
. (18) 

 

Self-regulated, positively defined operator 

in 2H , where 1 2,B p D p  , 1BB D . 

The pseudo-solution of the problem (18) is 

any vector 1H  for which the function of 

the discrepancy (18) reaches its lowest value. 

A normal task pseudo-solution is called a 

pseudo-solution, for which 2

i min  . 

We will prove that a normal pseudo-

solution (18) exists as unique. 

We will fix in spaces 1 2H ,H  singular bases 

1 2, , , me e e and 1 2, , , mf f f
.
 . 

Let 

1

1

m

k k

k

e H


      (19) 

2

1

n

i i

i

By f H


   .  (20) 

 

Then, taking into account (19), (20) 

 

1 1

1 1 1

1 1

1 1 1

)

( ) ( )  ,

(

( )

m n

kk i i
k i

m m n

kk i ii i
k i i m

m n

k k kk k k k
k k m

t m n

k k k k k k k k k k
k k t k m

f f

BX By BX fe

B X f fe

f f f

f

 

   

  

    



         

     

     

     

  
 

 

where kf  − orthonormal, so 

 

   

0

2 2

1 1

2

1

( ) ( ) ( ) ( )

( )

t m

k k k k k k

k k t

n

k

k m

F e BBe y X BB y X

  

 

        

          

 

 



 (21) 

 

Obviously, the smallest value of a non-

compliance functional achieves under these 

valuesβ in which the last m-t coefficients kβ  

are arbitrary, and the first t terms in (21) are 

equal to 0. 

 

If 2

i min  , 

 

then t 1 t 1 m 0     
 
and k

k

k

.


 


 

(k = 1, 2, ..., t). 

Normal problem solving (1) 

 

0

1

t
k

k

k k

e



 


   (22) 

 

Using (21) (22) we obtain that pseudo-

solutions and only they satisfy 

 

X BBX X BBy   . (23) 

 

Indeed, using (21) 
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1

2 2

1 1

1 1 1

 





  

 

  

   

      

      



 

  

m

k k

k

t m

k k k k k k

k k t

n n t

i i i i i i i

i i i

X BBX X BBX e

e e X BBy

X B f X Bf e

 

we obtain that k
k

k


 


 for (1, )k t  and exact-

ly 0 for the other m−t coordinates. 

We have a pseudo-connection 

 

( )X BBX X BBy     (24) 

 

the same 

 
t

k
k

k 1 k

e


 
   

 
  

 

Let operator X  operate from space 1H  in 

2H . Then we assign to each vector 2y H a 

uniform vector 0β  − normal pseudo-solution 

of the equation (18), which means the solution 

BY BX B   . This correspondence defines 

some operator BX 
 that acts from 2H  in 1H and 

is called a normal pseudo-inverse to X . 

Therefore, by definition 0 BX Y   for any 

2y H  that is 

 
1

.

, 

0 , 
B

k

k kX
e k t

f
k t



 

 

 
 

Again, consider the equation (1, 2) under 

the condition (6 ),  (4 )   and let 

 
1 1M D B B    , then BY BX B   . 

 var( ) var( ).

,  ,

B M B B

BDB E де B

       

     

 

where 

 
1 1

1 1

( ) ( )

( ) ,

X BBX X BBy X D X X D Y

X W X X W Y

       

  

   

 

 

( ) ( )  ,X BBX X BBX X BBX X BB        

 

1 ( )  ,P X BBX X BB     
                 

(25) 

 

1M P   . 

 

Where 1 ( )P X BBX X BBX    and 

 

1

,

0 ,

i

i

e i t
Pe

i t


 


, 

 

1P  − orthoprojector on 1 2( , , , )tL e e e . 

Likewise 2 ( ) ( )P BXX B BXX B    

 

2

,

0 ,

i

i

f i t
P f

i t


 

 . 

 

We have 2 2

1 1 2 2,  P P P P   , 1 2,  P P  - 

orthorecomplexes, otherwise orthoprojectors 

 

( )M X BBX X BB      

We use (25) 2BB BB  , BB E  ,then 

2 2

var (( )( ))

( ) ( )

( ) ( ) ( )

M M M

M XBBX X BB BBX X BBX

X BBX X BBX X BBX X BBX

   

      

        

 

  

 

Let's calculate 2σ . Let 

 

 ;

Y X BY BX B

y X e By BX Be

BY BX B

Be By BX

        
  

      

   


  

 

2

( )

( )

( ) ( )  ,

Be B X BXX Y

BX B B XX X BXX

B E XX B E P



 



     

       

    

 

 

where 2P XX  - ortoprojector; 2P  − idempo-

tent, symmetric matrix. 

That's why 2-E P  is also an orthoprojector. 
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Let P = 2E P , then Be BP  . 

So 
ijP P  a matrix of size n n . 

Denote 
1

n

ii

i

spP p


 . 

 

Calculate ( )Be Be . We have Be BP  , so 

 

1 1 1 1

(( )  .
n n n n

ij i j i j ij i j

i j i j

BP PB PB BP

P M M P M M
   

      

         

 

Where , (1, , )i iB i n    , so 

 

1 1

( ) ( )
n n

ij i j i j

i j

Be Be e BBe P M M
 

          

2 2( ( ) ) ( )ii i i ij i j i j

i j i j

P M P M M
 

           . 

 

So 

2

1

2

( ) cov( )

( ).

n

ii ij i j

i i j

M e BBe P P

spP

 

      

 

 
 

 

Because cov( ) 0i j   , so 2( )M E    

 

2

( ( )

( )

( )

( ) .

n

n

spP sp E X X BBX X BB

spE spX X BBX X BB

spE spX X BBX X BB

n sp X BBX X BBX n spP n r







   

   

   

      

 

 
2( )Me BBe n r     and it means that it is 

 

2

( )

Me BBe

n r


 


 also 

( )

e BBe

n r




 

 

an unassigned estimate 2 . 

 

So 

( )BX X BBX X B    , then B BX X B  . 

 

We prove that BX   satisfies the Moore-

Penrose conditions (9), which are necessary 

and sufficient for the matrix 
BX   to be pseudo-

inverse to BX  [3]. 

 

Proving 

1

1) ( ) ( )

( ) , and  .

B B

B B B B

X BXX X BBX X BBX X BBX X B

X BBX X B X X BXX P X

   

    

    

   
 

 

Where
1P  is the orthoprojector on the linear 

shell 1 2( , , , )tL e e e  

 

2) 

1

( )

( )

BBXX BX BX X BBX X BBX

BX X BBX X BBX BXP BX

 



  

   
, 

3) 1( )( )BX BX X BBX X BBX P     

 

− orthoprojector on the linear shell 

1 2( , , , )tL e e e  self-preservation. 

 

4) ( )BBXX BX X BBX X B    − symmetric. 

 

Thus BX  , it satisfies the Moore-Penrose 

conditions, and hence ( )BX BX  , on the 

other hand, 1( )BX X B     2  under the fol-

lowing condition: the set of values of B  is an 

invariant subspace for X X , and the set of val-

ues X   is an invariant subspace for BB . 

 

So -1

BX X B  . 

 

Definition 3. An estimationβ  of the param-

eter β  is called X  - unshielded, if 

MX X   , i.e if X - unmatched assess-

ment X . 

Lemma 1. Evaluation X BY  is an X -

unplanned estimate β . 

Proving. We use (2). Then, 

 

1 1

( ) 

   

 

      

    

   

B BX BY X BX B

X B BX X B B

X X X
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therefore, from (3) and (9) 

 

( ) ( )

.

M X M XX X XX

XX X X

 



     

  
 

 

Lemma 2. The covariance matrix of the 

( )D X  parameter − X  estimate in the mod-

el (2) is equal to 2( ) ( )D X X X BBX X    , 

where ( )X BBX   − pseudo-return to ( )X BBX  

Proving. We use [2] 

 

( ) ,

( ) .

B BX X BBX X B X By

X BBX X BBX X

  

 

  

    
 

 

Then 

 

.X XX Y XX X XX X XX          

 

Then using (3), (4), (9) we obtain 

 

( ) ( )( )

( , ( ) )

D X M X X X X

M XX XX 

        

   
 

2

( ) ( )

( ) .

MX X BBX X BB BBX X BBX X

X X BBX X

 



    

 
 

 

Let it 1 2( , ,..., )mC C C C . 

 

Let 1 2( , ,..., )nL X X X the linear shell of the 

strings of matrix X . 

 

Theorem 1. 

 

1 2( , ,..., ) ( )nC L X X X M c c      

 

Proving 

 

1 2( , ,..., ) ,nC L X X X C X     

 

where 1 2 nγ={γ ,γ ,...,γ }, ( ) ( )M c M X     

 

According to Lemma 2. 

 

MX X   this ( )M c X c      . 

That is c  - a linear unmatched estimate 

c . Calculate 

 

( ) ( )( )

( )( )

D c M c c c c

M X X X X

        

          
 

( )M XX X X
      =

( ) ( )M X X BBX X BB BBX X BBX X         
2( ) ( )

( ) .

X X B X X BBX X BBX X

X X BBX X cX BBXc

 



     

       
 

 

3. By assumptions in the linear model 

(1 − 5), rang X m . The matrix X BBX  has 

the order m m  and it is symmetric and inex-

tricably defined. Therefore, it has m  intrinsic 

eigenvalues 2 2 2 2

1 2 3 mρ , ρ , ρ ,…, ρ , such as 

 
2 2 2 2 2

1 2 t t 1 m 0           . 

 

Then takes place (11), where U  is an or-

thogonal n n  matrix, and V  is an orthogonal 

m m  matrix. 

The columns of the matrix U  are the intrin-

sic vectors of the matrix, and the columns of 

the matrix V  are the own vectors of the ma-

trix X BBX . That is, the matrix 

1 2( , , , )mV      , formed by its own vec-

tors, iν  denotes a vector column correspond-

ing to its own value 2

i . 

We have 2( ) i i iX BBX V     in addition to 

mV V E  . 

Let 1 2 3( , , , , )tL V V V V  the linear sheath of 

vectors  1 2 3, , , , tV V V V  and let 

 

1 2 1 2( , , , ) ( , , , )m tC C C C L V V V   . 

Then
1

t

i i i

i

C C V


       

where 1 2 tα=(α ,α ,…,α ) . 

 

Theorem 2. 

 
2 2 1

1

( ) ( ) ( )

( ) ( )

D XBBX XW X

X BBX X D X

  

  

    

  
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Proving. Let X BY  a normal pseudo-

solution. Also takes place (2), from where 

( )X X X X X         . From (3), in 

general, mathematical expectation 

1M X X      . 

Scattering ( )D  is relatively ( )M   equal 

 

( ) ( )( )

( , )

( ) ( ( )

( ) ( )( ) ( ) .

D M X X X X

M X X

X BBX X BB BBX X BBX

X BBX X BBX X BBX X BBX

 

 

 

  

        

  

    

   

 

 

The theorem is proved . 

We have c V   . Let's calculate ( )D c , 

where c  − unmatched estimate c . 

 

( )M c M V V X X         and 

c Mc V X        

2 2

( )

( ) ( )

( ) ( )  ,

D c M V X X V

M V X BBX X BB BBX X BBX V

V X BBX V D c

 

 

 

       

        

           

 

 

where 

 

2

1

2

2

2

m

(0) (0)(p ) (0) (0)

(0) (0)(0) (p ) (0)

(0) (0)(0) (0) (p )











 
 
 
 
 
 



 

and where 

2

22

2

1
, 0

( )

0, 0

i

ii

i

p
pp

p






 
 

, 

 

so that 

 
2 2 2

2 1 2

2 2 2

1 2

( ) ( )t

t

D с L
  

     
  

. (26) 

 

We see that the variance of a linear combi-

nation c  depends on inverse eigenvalues. 

And due to the smaller absolute value, the 

characteristic root has the greatest influence on 

this dispersion. 

We are interested in a separate coeffi-

cient i
 , then let the vector 

(0,0, ,1, ,0)  c V  have a unit on the i 

position, and the remaining coordinate is equal 

to zero. 

We require: 1 2 3( , , , , )tc L V V V V . We will 

C V    get with it

1

2

i

i

i

it

eV

 
 

   
 
 
 

, 

where i1 i1 i1, , ,    the elements of the line 

are matrix V. 

 

Consequence 1. 

 
2 2 2

2 1 2

2 2 2

1 2

( ) ( )i i it
i

t

D
  

     
  

 i (1,m)  

With  1 2 3( , , , , )i te L V V V V .        (27) 

4. Let it 

 

 1 2, , , mC C C C 2 2 2

1 2 t 0       - own 

values ( )X BBX . 

 

1 2( , , , )tL V V V  − a linear shell  of vec-

tors 1 2 3, , , , tV V V V  for which - respectively 
2 2 2

1 2 t 0      . 

 

Let  1 2, , , mC C C C    

1 2 1 2( , , , ) , ( , , , )t tL V V V c V           

 

and is a solution of the system  

 

1 1 1 2 1( ) ( ) ( )tV V V c     ,      (28) 

 

or in a matrix record c V   . 

Let 

BX Y  the normal pseudo-solution of the 

problem (2 − 5, 6). As shown above, takes 

place (28). We put in (28) 
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2 2 2

1 2 0k k t       (29) 
 

then 
1

V
k

k i i

i

c


   − shifted estimate c, 

 

1 1 2 2( ) ( ) ( )k k k k t tV V V       − bias, and 

2 2 2

1 2k k k tN        – shift value
kC . 

 

Then from (26) − (29) 
 

2 2 2
2 1 1

2 2 2

1 2

( ) ( )k
k
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Minimum Mi  when 1M Mi i changing the 

minus sign to plus 
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The first case 2 2
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Hence iM  grows. The minimum iM  for 

i = 0 and is equal, to 
 

2 2 2

0 1 2 mintM       

 

The second case 
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The third case 2 2

i   , iM comes down. 

The minimum for I = t is equal to 
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Consequence 2. 

Under conditions 1) 
2 2

iσ <ρ ; 
 

2) 1 2(0, ,1,0, ) ( , , , )i te L V V V     

2 2 2
2 1 2

2 2 2

1 2

( ) ( ) mini i it
i

t

D L
  

      
  

. 

 

Consequence 2 is not valid for all iβ̂ , be-

cause all ie cannot belong to 1 2( , , , )tL V V V , 

since they are ie -linearly independent (1, 2, ..., 

m), but rangX m . 

 

CONCLUSIONS 

 

In econometric modeling, the design of the 

structure of the predictor space by the re-

searcher is a tool for obtaining a prognostically 

effective specification of exogenous variables. 

According to the authors, the process of select-

ing signs and constructing prediktornym spac-
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es is appropriate to apply iterative. An ap-

proach to the selection of explanatory varia-

bles based on the study of singular schedules is 

effective for constructing econometric models 

with multi-collinear variables and the matrix 

of incomplete observations. Despite the mod-

erate increase in time for making decisions on 

the structure of the econometric model, the 

"personalization" of constructing patterns of 

interdependence of factors will contribute to 

the growth of their adequacy. 

Currently, the toolkit of research analytics 

is intensively expanding with the latest proce-

dures that provide high predictive efficiency. 

In econometric modeling, the problem of de-

termining informative predictors, the for-

mation of a rational set of exogenous varia-

bles, the justification of the dimension and 

structure of predictor spaces is relevant. The 

basic approaches to choosing the optimal set 

of features are, in particular, the overview of 

all combinations, direct selection and reverse 

exclusion, the weighting of signs in linear and 

logistic regression algorithms, the importance 

of features in decision trees and the variants of 

ensembles, for example, "random forest", etc. 

Modern Data Technologies, Data Mining, 

Machine Learning (ML) provide a wide array 

of feature design techniques. The purpose of 

designing and selecting features is to prevent 

the effect of re-training, to achieve greater 

compactness of the model by eliminating ex-

cess regressors, reducing the dimensionality of 

the learning processes without a teacher, con-

structing classifiers, mapping the process of 

partitioning data into classes, and determining 

the boundary of solutions in the reduced space, 

as well as substantiated interpretation, provid-

ing in-depth understanding of the model and 

learning data, visualization in spaces, the di-

mension of which will be perceived by the re-

searcher. 

Determining a subset of signs is an im-

portant component of machine learning and 

greatly affects the accuracy of ML models. 

The concept of machine learning maximizes 

the ability to define templates in the data 

achieved, in particular, by aggregating a set of 

attributes. The informatively weak sign can 

significantly increase its own prognostic utility 

and become strong in the presence of another 

effective set of features. 

Reconstruction and selection of features 

contributes to increasing the automation of the 

learning process. When studying ML models 

in large numbers, there is a danger of retrain-

ing, but clear selection rules can reduce their 

number. Consequently, the purposeful varia-

tion in the number of signs should be used by 

researchers to calibrate and study the model, 

since it enables us to justify the choice of a ra-

tional set of independent variables that deter-

mine the structures in the data and subsequent-

ly successfully predict trends in the behavior 

of economic systems. 

Note that even taking into account the rep-

resentative set of algorithms for designing the 

features, implemented on the basis of plat-

forms ML type R, Python, the researcher often 

has difficulties in designing sign spaces, and 

the choice of the conceptual approach and 

tools is ambiguous. When necessary to take in-

to account the specifics of origin and data for-

mats in Big Data technologies, along with their 

further unification and ensemblevization, there 

is a need for a researcher-driven "intervention" 

in a fast ensemble of large data analysis tech-

nology. 
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Анализ параметров мультиколлинеарных 

эконометрических моделей с матрицей 

наблюдений неполного ранга 

 

Виктор Кутовой, Ольга Катунина, 

Олег Шутовский 

 

Аннотация. Рассмотрена проблема опреде-

ления информативных предикторов, формиро-

вания рациональной совокупности экзогенных 

переменных, обоснования размерности и 

структуры предикторных пространств. Целью 

проектирования и отбора признаков является 

предупреждение эффекта переобучения, сни-

жение размерности в процессах обучения без 

учителя, построение классификаторов, отраже-

ние процесса разбиения данных на классы и 

определения границ решений в редуцирован-

ном пространстве, а также обоснованная ин-

терпретация, обеспечение углубленного пони-

мания модели и данных для обучения, визуали-

зация в пространствах, размерность которых 

воспринимается исследователем. Рассмотрены 

вопросы проектирования предикторных про-

странств и разработки эффективных процедур 

оценивания параметров эконометрических мо-

делей с мультиколлинеарными переменными. 

Проведено исследование альтернативных под-

ходов к формированию совокупности призна-

ков в моделях взаимозависимостей. 

Предложен математический инструментарий 

для вычисления параметров линейной эконо-

метрической модели в случае матрицы наблю-

дений неполного ранга, базирующийся на ис-

следовании сингулярных разложений.  

Использование сингулярного инструмента-

рия для декомпозиции и анализа матрицы дан-

ных позволяет повысить операционную эффек-

тивность и прогностическое качество процедур 

оценивания параметров эконометрических  мо-

делей. Математический подход к построению 

моделей взаимообусловленности факторов 

предназначен для выбора признаков и конст-

руирования предикторных пространств при ис-

следовании систем с мультиколлинеаными пе-

ременными и матрицей наблюдений неполного 

ранга. 

Ключевые слова: проектиррование призна-

ков, эконометрическая модель, мультиколлине-

арность, матрица наблюдений неполного ранга, 

сингулярное разложение, собственные числа. 


