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Abstract. The topic of determining informative
predictors, forming rational exogenous variables,
substantiating the dimension and structure of pre-
dictor spaces is considered. The purpose of design
and selection of characteristics is to prevent the ef-
fect of retraining, reduce the dimension in studying
the processes apart from a master, build classifiers,
reflect the process of dividing data into classes and
determine the boundaries of solutions in limited
space, as well as reasonable interpretation, provide
in-depth understanding of the model and data for
studying, visualization in spaces, the dimension of
which is perceived by the researcher. The design
predictor spaces and develop effective procedures
problems for estimating the parameters of econo-
metric models with multicollinear variables are de-
veloped. The study was made under alternative ap-
proaches to form the interdependencies models
features.

A mathematical toolkit is proposed for calculat-
ing the parameters of a linear econometric model
in case of rank deficient observation matrix, based
on the study of singular expansions.

Using a singular toolkit for decomposing and
analyzing the data matrix makes it possible to in-
crease the operational efficiency and predictive
quality of the procedures for estimating economet-
ric models parameters. The mathematical approach
to the construction of models of the interdepend-
ence of factors is intended to select characteristics
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INTRODUCTION

The multicollinearity problem is relevant
both for generalizing the factors interdepend-
ence of the complex systems simulation theo-
retical principles, and in terms of the opera-
tional aspect of the research. Applied modeling
and mathematical description of cause and ef-
fect relationships as a form of regression de-
pendencies is a leading, effective and practi-
cally demanded direction in a wide range of
applications for solving various behavior anal-
yses of technical, socio-economic, medical and
biological systems problems. A model tool for
identifying and formalizing interdependencies
is used to solve the management problems of
such systems and their components, in particu-
lar, for functioning regularities determining,
decision-making support on determining the
optimal parameters and operating modes, for
their development trends forecast, as well as
for justifying the strategies and scenarios of
their behavior in the condition of uncertainty,
indeterminacy, conflict, and, as a consequence,
significant risk of external environment.

In mathematical model sciences dealing
with the interdependence of factors, for exam-
ple, engineering, study of operations, econo-
metrics, biometrics etc., classical are consid-
ered the works by D. Farrar, R. Glauber, J.
Johnston, M. Kendall, L. Klein, M. Bartlett, H.
Tail, J. Meier, G. Orkat. The scientific works of
these authors include fundamental results on
the problems of estimating the parameters of
regression models, in which, in particular,
methodological approaches and tools for tak-
ing into account the phenomenon of
multicollinearity in the input data are devel-
oped.

Thus, the work of D. Farrar and R. Glauber
[17] on multicollinearity detection, diagnosis,
evaluation, consideration and the subsequent
correction of the design procedures for predic-
tion space in order to eliminate its negative
consequences is well known in the wide range
of engineering, natural systems researchers,
ecologists and econometricians. This work was
completed in 1965 in cooperation with the In-
stitute for Naval Research, which developed
theoretical approaches and mathematical mod-
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els to analyze the impact of the combination of
factors on the maintenance condition and the
cost characteristics functioning systems for-
mation of the Navy. To the set of exogenous
factors the researchers included, in particular,
the age of the vessel and its dimensions, the in-
tensity of use in marine logistics and defense
projects, fuel consumption, the time between
the scheduled maintenance and their cost.

Also the set of predictors includes the dis-
crete characteristics of the system, such as the
type of power plant (steam, diesel, nuclear
fuel), engine operation, equipment operation
and maintenance complexity, as well as a
number of functional and security subsystems
qualitative parameters for radar patrol, guided
missiles etc. The spatial samples for the data
studied were various naval purpose objects, in
particular, the destroyers of the Atlantic Fleet
and others.

Currently, the space of tools and technolo-
gies choice for estimating the models parame-
ters of interdependence of factors is expanding
intensively. For example, the researchers of the
applied natural science systems use mostly
OLS (Ordinary Least Squares), implemented
in most traditional statistical packages, econ-
ometricians mainly focus on the maximum
likelihood approaches, and the latest intellec-
tual data analysis and machine study profes-
sionals use the wide range of regression mod-
els regularization.

It is notable that all these approaches are
procedurally oriented and are chosen by the
researchers according to prior arguments. At
the same time the decision to choose the best
method for analyzing the interdependence of
the factors is practically not related to the spe-
cifics of the initial data.

Today the vast majority of regression tools
application areas recognize the almost univer-
sal presence of multicollinearity, which is es-
tablished as an indispensable characteristic of
the data base. Modeling technologies for pa-
rameter estimation offer an advanced tool for
diagnosing, taking into account and eliminat-
ing the negative effects of this phenomenon, in
particular, lasso methods, combing regression,
dimension diminishing, selection of optimal
subset of variables etc.
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It is important that in case of the implemen-
tation of the Big Data concept and digital
economy technologies in reaching the broadest
scope of human activity and the involvement
of vast amounts of predominantly unstructured
information, the relevance of the problem of
multicollinearity will increase. Thus, the de-
velopment of mathematical procedures for in-
depth study of the mechanisms of interdepend-
encies within the predictor spaces has not only
an applied demand for forecasting the devel-
opment of complex systems but also a signifi-
cant operational relevance in terms of ensuring
the adequacy of the constructed models and
observing the target properties of the parame-
ters estimates.

Here are the results of generalized ap-
proaches to the estimation of econometric
models parameters with the multicollinearity
and the rank deficient observation matrix,
which were previously studied by the authors
in a number of scientific works [5 — 7].

1. Let there be a linear relationship between
the variable Y and m explaining the variables
X, X,,.., X, and disturbance €, ¢ — the ran-

dom variable, we emphasize that we need only
the existence of finite moments of the second
order.

METHODOLOGY

If we have a sample of n observations on
the modifications of Y i X, j=12,..m,then

we can write
Y= %8, 40 = (L,n). (1)
j=1

Equations (1) can be written in the matrix
form

Y = XB+e, )
where
Y1 X Xy Xim
vy — Y, X = X1 Xy Xom
yn an Xn2 c Xnm
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B, €
B= B:z o= €
Bm Sn

Through X'"and &' we denote the matrices
transposed to X and ¢, respectively.
Let the conditions be:

1. Me=0; (3)
2. M (g€’) = °E, — unit matrix; (4)
3. X — matrix whose elements are deter-
ministic numbers (5)

4. X range = m (matrix — X full rank) (6)

The task (1 — 5) was considered by many
authors [1, 2]. First of all, we give a very un-
derstandable version in the book of
Wetherburg [13] and Davies [11]. Especially
useful are the books of Plackett [12, 14] and
\Voyevodin [3].

The case when the condition (3) is not ful-
filled was considered in [9] with Meg=0.
There is some compromise between the bias

value ﬁand value D(B) . Case when [2] is not

fulfilled was considered by Aitken [10], who
proposed a generalized least squares method
on the condition that matrix X is of the full
rank. In this study Aitken's method extends to
task (1, 2), provided that (6) is not fulfilled,
but takes place

rangX =t<m (6")
at the same time takes place
M(ge') = D ='W, (4"

where &” is an unknown parameter, and D, w
— are known symmetrically positive defined
matrices of order nxn. Then D admits the
representationD =PP’, where the non-
developed matrix P is positively determined.
So D=PP’ that P'DP* =Eand
P'P*=D". Let's denote P*=B. D com-
mutes with B.
From (4)" follows
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W*=D"*, W'=BB=c’BB.

So the matrix of covariance

2
G 616,0, 616,04,
2

0,0,0 (e} 0,0,0

M(SS,)Z 1 2 12 ‘2 2 n 2n —
2

6,6,6,, 0,0,G,, ...  G.

= oW,

where 7 = Mg’ = Dy,— dispersion y,,
cio;p; = Mgg; = covy,y, —covariance Y,
and y;. W —the known weight matrix.

Let the vectors of the basis
€,€,,....6, € H; —the linear space H, setin
certain matching vectors f, f,,..., f of linear
space H,. Then there exists a linear operator
X operating with H, in H,, which translates
each vector e, into a corresponding one vector
Xe, = Zn: f,a,,. We can determine the operator

i=1

X by equality

XB= XZBkek = Zkaek =
ZBkZaki i :Z fiza‘kin'

(")

Between the linear operators X and the
matrices ||| there is a one-to-one corre-

spondence. Since the symbols and properties
of operations over matrices and operators co-
incide, then any transformation of operator
equality leads to the same matrix equality.
Therefore, from a formal point of view, we do
not care whether we are dealing with matrix or
operator relations.

Let's consider rectangular matrices of
nxmdimensions, the rank of which coincides
with the minimum from numbersm,n. Such
matrices are called full rank matrices. Their
characteristic feature is that they do not change
their rank under any small disturbances. Sys-
tems of linear algebraic equations with full
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rank matrices have much in common with the
non-degenerate matrices systems.

Let the matrix X of the system (1 — 6) be a
full rank matrix. In this case the system may
be incompatible. Otherwise, it's always com-
patible, but it has not the only solution.

We will look for a normal pseudo-
connection of the system (1 — 6), that is such

vector 8, which among all the vectors mini-
mizing the functional of the discrepancy

F,(B) = XB-Y| has the smallest Euclidean

norm.

The invariance of the Euclidean norm to
unitary transformations allows us to reduce the
problem of finding normal pseudo-connection
of the general type system to a simpler task.

It is easy to verify that the task of determin-
ing normal system pseudo-connection (1) is
equivalent to the solution of the same problem
for another system. But transformations can
always ensure that the matrix is sufficiently
simple, for example, triangular, normalized,
trapezoidal etc. On the construct rather effec-
tive numerical methods.

If any of the methods does not provide the
necessary accuracy of the solution of linear al-
gebraic equations system, then there is no rea-
son to hope that another method will provide
the same system with better results. Probably
such a system can be regarded as unstable. It is
known [1 — 4] that the pseudo solution of a re-
defined system (2) with a full rank matrix is a
common solution of the system

XXB=XY,

with a square non degenerate matrix XX of
order mxm.
Normal solution of the system

B=(XX)'XY.
It is necessary to demand
> B > min. (8)
i=1

Definition 1. The matrix X (mxn) is

called the Moore-Penrose pseudo inverse for
matrix X if it satisfies the following four con-
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ditions:

1 XTXXT=X"

2 XX"X =X

3 XX —symmetric,

4 XX —symmetric. 9

From (9) condition follows
XTXXT=X"= X" XXX =X"X,

if X*X =P, then P*=R.

In addition, from condition 4 P, is symmet-
ric. So P — orthoprojector. Similarly
XX" =P, — orthoprojector.

It can be proved that such a matrix X" al-
ways exists and is unique [2]. If X is a non-
degenerate square matrix, then it obviously

satisfies the conditions (1 — 4), if X is rectan-
gular and has a full rank, then

X+t =(XX)X". It can be verified that the
pseudo inverse to diagonal nxm matrix

6, 0 - 0
0 o, - 0

D=l o, |,
0 0 0
0 0 - 0]

is a diagonal mxnmatrix.

o, 0 - 0 0 - 0
o o -
dor=| L : , (10)
0 0 s, 0 0
, 6,#0
where o} ={
0, 0,=0
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Further we use [3] a singular matrix X [3]
X=U>V', (12)

where U is the orthogonal nxn matrix, V'
is the orthogonal mxm matrix, and Z — the
diagonal matrix, at which o; =0 for, i=j,
oy = 0; 20. Columns of the matrix U are the

intrinsic vectors of the matrix XX', and the
columns of the matrix V are the vectors of the
matrix XX'. Using (9), [2, 3] we obtain

Xt=VyIU.
RESULTS

The estimates of the least squares of the pa-
rameterp in (1) are defined as values

B, Byy---» B, Minimizing

i Zri:(yi _injﬁj)(yk _Z ijBj)aik

-3

(12)

— min,
®)

[
B
where the matrix A=|a,| is a symmetric
positive definite matrix.

Solution (12) B, B,,-.., B, we will call

task pseudo-solution (1 — 2). The solution will
be linear towards y. In addition, under the con-

dition (3), P will be unbiased estimate Pj
in (1). That is

M (RB)=PB. (13)

The solution in general will not be the only
one. We will require that the minimum was the
amount (8). Then the solution (12) is unam-
biguous.

2. Let be given two linear real Euclidean

spaces H,,H,and a linear operator X operat-
ing with H,inH,. Operator X", acting with
H,inH,, conjugates to X . Then for arbitrary
vectors BeH,and yeH,equality is per-
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formed

(X.B.y) = (B. X"y). (14)

For any arbitrary operator X there is a con-
jugate operator X, and thus it is only one. We
choose in H, an orthonormal basis

€,6,,...,&,. Then for every one BeH, there
is a schedule

B= Z(Bek)ek : (15)
k=1
Applying (15) to X'y we get

X'y =Y(X"y.e)e, .

k=1

Then, taking into account (14)

X'y =>"(y, Xe)e,.

k=1

Definition 1. The linear operator B acting
inH, is called self-directed (symmetric), if for

any vy, y, € Hz = (By11y2) = (yl’ Byz)
Definition 2. If, (By,y)> 0 for arbi-
traryy e H,, then the operator is positively

definite. When (By, y) >0, then operator B is

called positive.
Self-directed operator B corresponds to a
symmetric matrixB'=B.

Let’s define the operators X "BBX, BXX'B
that act accordingly in H,,H, .

Operators X'BBX,BXX'B are self-
directed according to H,,H,. It is X*BBX
positive in H,, and the operator BXX'B is
positive in H,.

In fact, for any B H,, y € H,we have

(X*BBXp,B) = (BXB,BXp) =0
(BXX "By, y) =(X"By, X"By) >0.
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Operators X'BBX, BXX'B are self-
directed, therefore they have a system of or-

thonormal vectors e,,e,,...,e., which are their
own vectors for X'BBXand f,f,,...,f .

They are the vectors for BXX'B .
The operator BX translates the system

e,e,,...,6, Into some orthogonal system
BXe,,BXe,,...,BXe,.
Indeed,

(BXe;,BXe;) = (X"BBXe; ;) =
2 2
(e ei1ej) =P (ei1ej) =0
(BXe;, BXe) = (X"'BBXe, &) =p;’(6,6)=p,"-

ati=j

Consequently |BXe,|=p,, where p, are the
singular numbers.

Therefore, the vectorBXe, is non-zero,
then and only if the proper value p,” of the op-
erator is not zero.

The vector X'Bf, is the operator's vec-

tor X "'BBX . Indeed

(X*BBX) X “Bf, = X"B(BXX"B) f, = X"Bp: f,
(X"Bf X "Bf,) = (BXX"Bf, f,) = pi (f, f,) = pi -

Thus non-zero values of operators X "BBX
and BXX "B always coincide. Denote our own
values through p?,p3,...,p> . However, without

limiting generality p’>p2>,...,p>>0, and

the remaining eigenvalues p; are equal to ze-
ro.
Obviously, the eigenvaluesv of the opera-

tors X *BBX , BXX "B differ only by the multi-
plicity of the null eigenvalue. Operator

X*BBX has levelsm—t, operator BXX'B
has level n—t, which are called singular num-
bers of the operator X .

We take as a basis inH,; the orthonormal
system e, e,,...,e, of eigenvectors of the oper-
ator X*BBX . Then the vectors e,e,,...,¢

form a basis in the domain of values X "BBX |,
and e _,,€.,,...,&,the basis in the core of the

Transfer of Innovative Technologies
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operator X ‘BBX .
f, f,,..., f, — orthonormal basis in H,. As

f., f,,...,f, we take vectors obtained after

normalization BXe,BXe,,...,BXe,. That is

, :%, 1=12,...,t. Let's take any basis
[BXe]

in the kernel BXX'B. It is clear that

fi.1 fi.0s-.., T, they are their own for the oper-

ator BXX*B. Then we have

pf, k<t
BXe, = (16)
0, k>t
P&, k=t
X"Bf, = : @17
0, k>t

e,e,....e,, f,f,,..., f —singular bases.
Let's have y = Xp+e = By =BXp+Be.
We find a vector p for which

(B-XBYBY-XB)= (g

e'BBe — min

Self-regulated, positively defined operator
in H,, whereB=p™*,D=p*,BB=D".

The pseudo-solution of the problem (18) is
any vector e H, for which the function of

the discrepancy (18) reaches its lowest value.
A normal task pseudo-solution is called a

pseudo-solution, for which ZB? —min.

We will prove that a normal pseudo-
solution (18) exists as unique.
We will fix in spaces H,,H, singular bases

e.e,,....eand f, f, ... .f .
Let
B:ZBkek eH, (19)
k=1

Transfer of Innovative Technologies
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By=ZYi fieH,. (20)
i=1
Then, taking into account (19), (20)

BXB-By=BX >Be—v,f =
gBkB(X eﬂ—évi f i_igﬂi fo
kzm:;‘(kak f k_Yk f k) - kglyk k:

Z(kak -7 f+ Z Bepi — 1) fi = Z Y. f o
k=1 k=t+1 k=m+1
where f, — orthonormal, so

F,(B) = (¢'BBe) = (y — XB)'BB(y — XpB) =

=3 BePc 1) + 2 (BePc—7i) +

1 k=t+1

(21)

Obviously, the smallest value of a non-
compliance functional achieves under these

valuesf in which the last m-t coefficientsp,

are arbitrary, and the first t terms in (21) are
equal to 0.

If > B2 —min,
then B,., =B, =...=P, =0 and B, =Z—k-
k
k=1,2,..,1).
Normal problem solving (1)
- Y
Bo =D "te, (22)

Using (21) (22) we obtain that pseudo-
solutions and only they satisfy

X *BBXpB = X"BBy. (23)

Indeed, using (21)
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X‘BBXB=X"BBX Y B =

k=1

Pinek + z PinekX*BBy =

1 k=t+1
n n t

= X*BZYi i = ZYiX*Bfi = ZYipiei
i-1 i1 i-1

we obtain that B, = 2% for k = (Lt) and exact-
P
ly O for the other m—t coordinates.
We have a pseudo-connection

Il
MH

=
1

B=(X"BBX)"X'BBy  (24)

the same

t
B:Z{Y_k}ek
k=1 | Pk
Let operator X operate from space H, in
H,. Then we assign to each vector ye H,a
uniform vector B, — normal pseudo-solution

of the equation (18), which means the solution
BY = BXB+ Be. This correspondence defines

some operator X that acts fromH, in H,and
is called a normal pseudo-inverseto X .

Therefore, by definition B, = X;Y for any
y e H, thatis

-1
- f k{pk e k=<t
0 , k>t.

Again, consider the equation (1, 2) under
the condition (6'), (4") and let

Meg'=D=B"B™, then BY = BXp + Be.
var(Be) =var(g-€). M[Bee'B]=
BDB =E, oe € = Be

where

B=(X"BBX)"X*BBy =(X'DX) XD =
(XW X)X WY,
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B=(X"BBX)"X*BBXp+(X"BBX)" X "BBe,

B=PB+(X"BBX)" X 'BBe, (25)

Where P, =(X"BBX)"X"BBX and

Pe—ei’
1~ O,

P, — orthoprojector on L(e,,e,,...,e).
Likewise P, = (BXX “B)*(BXX *B)

{fi, i<t
P,f = )
0O, i1>t.

i<t

i>t’

We have P?=P,P?=P, ,P,P, -
orthorecomplexes, otherwise orthoprojectors

B—Mp=(X"BBX)X BBs

We use (25) BB =c’BB, BBse' = E ,then
varp =M ((B-MB)(B-MB)) =

M (XBBX)* X *‘BBoee'BBX (X "BBX)" =
o?(X"BBX)* X "BBX (X "BBX)" = 6*(X "BBX)"

Let's calculate o2. Let

{Y = XB+e {I§Y = BXpB+Be
=

_ =
y=XB+e By =BXp + Be
BY = BXB+Be
Be=By—-BXp;

Be =B(XB+g)—-BXXY =
BXB+Be—B(XX*XB)—BXX e=
B(E-XX")e=B(E-P)e,

where P, = XX - ortoprojector; P, — idempo-

tent, symmetric matrix.
That's why E - P, is also an orthoprojector.

Transfer of Innovative Technologies
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Let P=E —P,, then Be = BPs.
So P =|R,| amatrix of sizenxn,

Denote SPP =Y p;; .

i=1
Calculate (Be)'Be. We have Be = BPg, so

BP¢'ePB = PBe'eBP =

n n

=ii P ((gE; - M8M8)+ZZPM§ g .

i=l j=1 i=1l j=1

Whereg, =Bg;,i=(L,...,n), so

(Be)'Be =e'BBe = ZZ P, (%,
= ZP..(E.Z _(Mgi)z) +Zpij(§i§j

i#]

~MEME,) =

~MEME)).

So
M (e'BBe) = Z o2+ > P, cov(gE

I#]

= c°(spP).

Because cov(g;) =0, s0M (eg) =°E

SpP = sp(E — X (XBBX)XBB =

= SpE, —spX (XBBX)*XBB =

= SpE, —spX (XBBX)*XBB =
=n-sp(XBBX)"XBBX =n-spP,=n-r.

Me'BBe = 6°(n—r) and it means that it is

2 _ Me BBe also e'BBe
(n=r) (n=r)

an unassigned estimate c°.

So
X3 =(XBBX)*XB ,then X} =X:B.

We prove that X, satisfies the Moore-
Penrose conditions (9), which are necessary

Transfer of Innovative Technologies
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and sufficient for the matrix X, to be pseudo-
inverse to BX [3].

Proving

1) XzBXX; =(XBBX)"XBBX(XBBX) XB=
=(XBBX)" XB=Xg, and X;BXX;=PX; .

Where P, is the orthoprojector on the linear
shell L(e,e,,...,&)

BXXBX = BX (XBBX)"XBBX =
= BX(XBBX)" XBBX = BXP, = BX
3) X;BX = (XBBX)(XBBX)=P,

2)

— orthoprojector on the linear shell
L(e,e,,....e) self-preservation.

4) BXX5; = BX(XBBX)XB — symmetric.

Thus X;, it satisfies the Moore-Penrose
conditions, and hence X =(BX)", on the
other hand, (BX)" =X"B™ [2] under the fol-

lowing condition: the set of values of B is an
invariant subspace for XX , and the set of val-
ues X' is an invariant subspace for BB'.

So X; =X'B™.

Definition 3. An estimationB of the param-
eter B is called X - unshielded, if

MXB=XB, i.e if X/B- unmatched assess-
ment X3.

Lemma 1. Evaluation = X*BYis an X -
unplanned estimate f3 .
Proving. We use (2). Then,

B=X.BY =X/ (BXB+Bg)=
= X"BBXB+ X B 'Be =
= X" XB+ X*e
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therefore, from (3) and (9)

M (XB) = M (XXX + XX g) =
XX *XB = XB.

Lemma 2. The covariance matrix of the
D(XP) parameter — X[ estimate in the mod-

el (2) is equal to D(XB)=c?X"(XBBX) X,
where (XBBX)" — pseudo-return to (X BBX)
Proving. We use [2]

X/ =(XBBX)"XB, X;By =
(XBBX)" X BBXB+ X c.

Then

XB=XX*Y = XX XB+ XX e = XB+ XX .

Then using (3), (4), (9) we obtain

D(XB) =M (XB—XB)(XB—XB) =
M (XX g, &' (XX™)) =
MX (X BBX)" X BBee'BBX (XBBX)' X =
o’ X'(XBBX)" X.
Letit C=(C,C,,...C,).

Let L(X,,X,,...,X,)the linear shell of the
strings of matrix X .

Theorem 1.

CelL(Xy, X, X,)=M(cB)=cp

Proving

CeL(Xy, Xy X, ) =>C =9X,
where y={y,.Y,.....7,}, M(cB) = M (yXB)

According to Lemma 2.

MXp = X thisM (cB) = yXB =cp.
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That iscp - a linear unmatched estimate
cp . Calculate

D(cB) = M (cB—cB)(cB—cB) =

M (YXB = yXB)(yXB —yXB)’ =

M (YXX *ee’X ¥ X'y") =
MyX (XBBX)* X BBeg'BBX (XBBX)* X'y’ =
= yX (XB*X)"XBBX (XBBX)" Xy =
= yX'(XBBX)* X' = cX BBXC'.

3. By assumptions in the linear model
(1 — 5), rang X <m. The matrix XBBX has

the order mxm and it is symmetric and inex-
tricably defined. Therefore, it has m intrinsic

eigenvalues p?, p2, p2,..., p-,, such as

Pr2p;2..pi 2pr, ==pp =0.

Then takes place (11), where U is an or-
thogonal nxn matrix, and V is an orthogonal
mxm matrix.

The columns of the matrix U are the intrin-
sic vectors of the matrix, and the columns of
the matrix V are the own vectors of the ma-
trix XBBX . That is, the matrix

V =(v;,v,,...,v,), formed by its own vec-
tors, v, denotes a vector column correspond-
ing to its own valuep’.

We have (XBBX)V, =p?v, in addition to
VV =E,_ .

Let L(V,,V,.V;,....V,) the linear sheath of
vectors V,,V,,V,,...,V, and let

C'=(C,C,,....C,) eL\V,V,,...V,).
t
ThenC/' = Zvioci sCosaV!
i=1
where o=(a,,a,,...,0, ) .

Theorem 2.

D(B) = 6*(XBBX)" = 6*(XW *X)"
= (XBBX)" = (XD*X)*

Transfer of Innovative Technologies
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Proving. Let B=X*BY a normal pseudo-
solution. Also takes place (2), from where
B=X*(XB+€)=X"XB+X*e. From (3), in
general, mathematical expectation

MB=X"XB=pp.
Scattering D(B) is relatively M (B) equal

DPB)=M@B-X"XB)(B—-X"XB) =

M (X g, eX") =

(XBBX)* X'(BBee'BBX (X BBX)" =
(XBBX)"(XBBX)(XBBX)* =(XBBX)".

The theorem is proved .
We have c=aV'. Let's calculate D(cp),
where ¢ — unmatched estimate cp.

M (cB) = MaV B =aVX*Xp and
cB—McP=aVX'e
D(cB) =MaV X *ee’X Vo' =
MaV'(XBBX)" X BBee'BBX (XBBX)Va' =
o?aV'(XBBX)*Va' = D(cB) = c’a) ‘o,

where
2=
()" ) - (0) (0) ... (0)
| © @ ©) () ... (0
0 © - )0 ... (0
1
—, pf =0
and where (p?)" =1 p? P :
0, p’=0
so that
D(eB):oz(“—f+°‘—§+L+°‘—;2). (26)
P Py Py

We see that the variance of a linear combi-
nationcp depends on inverse eigenvalues.
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And due to the smaller absolute value, the
characteristic root has the greatest influence on
this dispersion.

We are interested in a separate coeffi-

cientp,’, then let  the vector
c=aV'=(0,0,...,1...,0) have a unit on the i
position, and the remaining coordinate is equal

to zero.
We require: ¢’ e L(V,,V,,V;,...,V,) . We will

— !

C=aV' getwithita =6V =| .° |

where V;;,Vip,--., Vi the elements of the line
are matrix V.

Consequence 1.

2 2 2
D(B,) =0’ (<% +=2+--+ %) i=(Lm)
Pr P Py
With e e L(V,\V,,V,,....V.). 27)
4. Letit
C={C.C,....C,}pi 2p;=...p; >0 - own

values (XBBX).

L(V,.VY,,...,V,) —alinear shell of vec-
torsV,,V,,V,,...,V, for which - respectively
pl>pi>..p7>0.

Let C'={C,C,,....C,} €
eL(\V,V,,...V,)=c=aV' oa=(o,a,,...,a,)

and is a solution of the system
o, (V) +o,(V,)+...ou(V,)=C", (28)

or in a matrix record c=aV'.
Let X;Y the normal pseudo-solution of the

problem (2 — 5, 6). As shown above, takes
place (28). We put in (28)
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2 2 2
O+, +...+0; =0 (29)

then ¢, = Zoc V, — shifted estimate c,

i=1

— bias, and

a’k+l (Vk+l) + ak+2 (Vk+2) +.. 'O('t (Vt)

N, =, +0a’,+...+af —shift valueC, .
Then from (26) — (29)

2 2 2

. o« a
D(CB)=c*(ZF+—=2+...+—=%).
1 2 k

Let M, =N, +D(C,p)

The

Looking for minM, (0<k<t)so

2
i— a t
S

: j
i Pj =
2 t

M, zazj+20c

j pj j=i+l

P1 Pi
2 2 2 2
o, .O o —p
i+1 2 2 i
M i+l MI - 2 —Yin 0ci+1|: 2 j|
pi+1 i+1

Minimum M, when M, — M, _, changing the
minus sign to plus

2 2 2
c°—p <0 ‘>0
) pz, = pz, 2:>pi2+1S02£pi2_
c°—p;, 20 Py <C
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The first case 6° >p? =M, -M,, >0.

Hence M, grows. The minimum M, for
i =0 and is equal, to

M, =0 +05 +...+ 0 — min
The second case
PraSo <py.
The minimum N, + D(C, ) under
1<k <t-1isequal to

N, + D(ékﬁ) =
2 2
= Gz(& . I )+ o; —>
plz pz i le;l
— min mpu 0 <k <t.

The third case o* <p?, M, comes down.
The minimum for | =t is equal to
2

+ﬁ)—>min
2
t

2 2

_ 2% 0y

Mt—G (—2+—2+
1 2

Consequence 2.
Under conditions 1) 62<Pi2 ;

2)e =(0,...,1,0,..) e L\, V,,...V.) =
2 2

DB,)=oc ('1 '2+L+ It)—>m|n
P1 pz pt

Consequence 2 is not valid for all f;, be-
cause alle cannot belong to L(V,,V,,....V,),
since they are e, -linearly independent (1, 2, ...,
m), but rangX <m.

CONCLUSIONS

In econometric modeling, the design of the
structure of the predictor space by the re-
searcher is a tool for obtaining a prognostically
effective specification of exogenous variables.
According to the authors, the process of select-
ing signs and constructing prediktornym spac-
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es is appropriate to apply iterative. An ap-
proach to the selection of explanatory varia-
bles based on the study of singular schedules is
effective for constructing econometric models
with multi-collinear variables and the matrix
of incomplete observations. Despite the mod-
erate increase in time for making decisions on
the structure of the econometric model, the
"personalization” of constructing patterns of
interdependence of factors will contribute to
the growth of their adequacy.

Currently, the toolkit of research analytics
is intensively expanding with the latest proce-
dures that provide high predictive efficiency.
In econometric modeling, the problem of de-
termining informative predictors, the for-
mation of a rational set of exogenous varia-
bles, the justification of the dimension and
structure of predictor spaces is relevant. The
basic approaches to choosing the optimal set
of features are, in particular, the overview of
all combinations, direct selection and reverse
exclusion, the weighting of signs in linear and
logistic regression algorithms, the importance
of features in decision trees and the variants of
ensembles, for example, "random forest", etc.

Modern Data Technologies, Data Mining,
Machine Learning (ML) provide a wide array
of feature design techniques. The purpose of
designing and selecting features is to prevent
the effect of re-training, to achieve greater
compactness of the model by eliminating ex-
cess regressors, reducing the dimensionality of
the learning processes without a teacher, con-
structing classifiers, mapping the process of
partitioning data into classes, and determining
the boundary of solutions in the reduced space,
as well as substantiated interpretation, provid-
ing in-depth understanding of the model and
learning data, visualization in spaces, the di-
mension of which will be perceived by the re-
searcher.

Determining a subset of signs is an im-
portant component of machine learning and
greatly affects the accuracy of ML models.
The concept of machine learning maximizes
the ability to define templates in the data
achieved, in particular, by aggregating a set of
attributes. The informatively weak sign can
significantly increase its own prognostic utility
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and become strong in the presence of another
effective set of features.

Reconstruction and selection of features
contributes to increasing the automation of the
learning process. When studying ML models
in large numbers, there is a danger of retrain-
ing, but clear selection rules can reduce their
number. Consequently, the purposeful varia-
tion in the number of signs should be used by
researchers to calibrate and study the model,
since it enables us to justify the choice of a ra-
tional set of independent variables that deter-
mine the structures in the data and subsequent-
ly successfully predict trends in the behavior
of economic systems.

Note that even taking into account the rep-
resentative set of algorithms for designing the
features, implemented on the basis of plat-
forms ML type R, Python, the researcher often
has difficulties in designing sign spaces, and
the choice of the conceptual approach and
tools is ambiguous. When necessary to take in-
to account the specifics of origin and data for-
mats in Big Data technologies, along with their
further unification and ensemblevization, there
is a need for a researcher-driven "intervention”
in a fast ensemble of large data analysis tech-
nology.
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AHaJN3 NapaMeTPOB MYJIbTHKOJIJIHMHEAPHBIX
IKOHOMETPHUYECKHX MoJiesiel ¢ MaTpullei
HA0JII0/IeHU I HeNOJIHOTO PaHTra

Buxmop Kymoeou, Onvea Kamynuna,
Onee lllymoscxuii

AnHoTanus. PaccMoTpena mpobiema orpee-
TeHusT WHPOPMATHBHBIX MPEIUKTOPOB, (GopMHpO-
BaHUs PallMOHAJIHLHON COBOKYIHOCTH DK30TCHHBIX
[IEPEMCHHBIX, OOOCHOBaHUS PAa3MEPHOCTH H
CTPYKTYPBl HPEAUKTOPHBIX HpocTpaHcTB. Llenbro
MPOEKTUPOBAaHUA M OTOOpa TPU3HAKOB SIBIISETCS
npegynpexaeHue spdexra mnepeoOydeHus, CHU-
JKEHHE pPa3MepHOCTH B TIporieccax oOydeHus 0e3
YUUTENIsI, TIOCTPOCHUE KJIACCH(PHUKATOPOB, OTpaxke-
HUE Mpollecca pa30MEHUs NaHHBIX Ha KIACChl U
OTIpeNeNeHUs IPaHULl PELICHUH B peoyLHpOBaH-
HOM HPOCTPAaHCTBE, a TaKkke OOOCHOBAaHHAs HH-
Teprperanus, odeclieueHre yrIyOJIeHHOro MOHU-
MaHMs MOJEJIM U JaHHBIX IJ1s1 00y4eHus], BU3yalu-
3alusl B IPOCTPAHCTBAX, Pa3MEPHOCTh KOTOPBIX
BOCIIPHHUMAETCSl HMccienoBaTeneM. PaccMOTpeHsl
BOIIPOCHI IIPOCKTUPOBAHUA IPEIUKTOPHBIX IIPO-
CTPaHCTB W Pa3pabOTKU 3(PPEKTUBHBIX MPOIECTYP
OLICHMBAHUS TApaMeTPOB IKOHOMETPUYECKHX MO-
JleJel ¢ MYJIBTUKOJUIMHEAPHBIMU IIE€PEMEHHBIMHU.
[IpoBeneHo wuccienoBaHne ajabTEPHATUBHBIX IIOA-
XOIOB K (POPMHUPOBAHUIO COBOKYITHOCTH HpHU3HA-
KOB B MOJIEJISIX B3aUMO3aBUCHMOCTEN.

[Ipennoxxen MareMaTH4YEeCKUN UHCTPYMEHTApU
IUIl BBIYMCIICHHUS TapaMeTpOB JIMHEWHOW SKOHO-
METPUYECKOH MOJICNN B cy4ae MaTpHIlbl HaOro-
JICHUH HETOJIHOTO paHTa, 0a3upyIOIIMHCS Ha HC-
CJICZIOBAHUM CHHTYJISIPHBIX PA3JI0KEHUH.

Hcnonb3oBaHrue CHHTYIISIPHOTO HMHCTPYMEHTa-
puda 11 JEKOMIIO3MIIMU U aHaJIM3a MaTpulbl JaH-
HBIX IT03BOJISIET MOBBICUTDH ONEPALMOHHYIO 3 deK-
TUBHOCTb U NMPOTHOCTHYECKOE KAaueCTBO MPOLEIYD
OLICHMBAHUS MTAPaMETPOB SKOHOMETPUUECKUX MO-
Jeneid. MareMaTuyecKuid MoAxoJl K IMOCTPOEHHUIO
MoZeNel  B3aMMOOOYCJIOBIEHHOCTH  (haKTOpOB
npeHa3HaYeH il BBIOOpa MPU3HAKOB M KOHCT-
pyupOBaHus NPEIUKTOPHBIX IIPOCTPAHCTB IIPU UC-
CIIEZIOBAHUM CHCTEM C MYJIBTUKOJIMHEAHBIMH IIe-
PEMEHHBIMU M MaTpHlleld HaOJIONEHUI HEIOJIHOTO
paHxra.

KJroueBble cj10Ba: MPOEKTUPPOBAHUE MPHU3HA-
KOB, SKOHOMETpPHYECKasi MOAEIb, MYJAbTUKOJUIHHE-
apHOCTh, MaTPHIlA HAOIONCHNUI HENOJIHOTO paHra,
CHHTYIISIPHOE Pa3IokKeHUe, COOCTBEHHBIE YHUCTIA.
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