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Impact a circular cylinder with a flat on an elastic layer
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Abstract. In the work the comparison of the
results of solving two plane problems is
performed: the impact of a circular cylinder with a
plane platform parallel to the cylinder axle (the
flat) with an elastic layer and a second — plane
strain state of nonstationary interaction of a
circular cylinder with a flat with an elastic layer in
a purely elastic and elastic-plastic mathematical
formulation corresponding. The first contact occurs
along the plane of the flat. A good coincidence of
the results of the second problem at an elastic stage
with the results of the first problem is shown. In
the author's works a new approach was developed
to solve plane and tree dimension problems of
impact and non-stationary interaction in an
elastoplastic formulation. The crack growing was
simulated using an elastoplastic mathematical
model. The numerical solution was obtained using
the finite difference method scheme.

The use of an elastic-plastic formulation makes
it possible: 1) determine the stress-strain state at
the points determined by the partitioning grid of
the computational domain, not only on the surface;
2) to give a reliable description of the development
of plastic deformations — the stage corresponding
to plasticity is a continuation of the elastic stage;
3) reliably determine the destruction toughness.
A method has been developed for calculating
plastic strain fields and destruction toughness of
the material using the solutions of dynamic plane
problems of the stress-strain state in an
elastoplastic formulation taking into account
possible material unloading; 4) to verify and
calibrate the solution of problems in an
elastoplastic formulation for the first steps by time
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when the deformation process is elastic, it is
convenient to use the solution of the corresponding
elastic problem.

Keywords: impact, elastic, elastic-plastic, layer,
plane problem, hard cylinder.

INTRODUCTION

The approach [3 — 7] for solving the dynamic
problems, developed by V.D. Kubenko makes
it possible to determine the stress-strain state
only on the surface of the medium into which
the drummer penetrates. In addition, this
approach does not allow to investigate the
impact of elastic shells of S.P. Tymoshenko
type. To the equations describing the dynamics
of the shell, the Laplace transform and the
development to Fourier trigonometric series
are applied. After returning to the space of the
originals and using theorem on convolution in
integral expressions, the components of the
series of normal and tangential displacements
of the median surface of the shells of the S.P.
Tymoshenko type some nuclei will have

asymptotic O(l). Therefore, with increasing
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order of a reduced system of integral equations
of Volterra of the second kind [1 — 3], the
determinant of the system of linear algebraic
equations will be indefinitely enlarged — it will
seem that the matrix of this system is weak
conditioned. However, if wuse shell of
Kirchhoff — Love type [4 — 7], then when
solving problems of impact, the convergence
of the solution will be guaranteed. This led [8
— 12] to the expediency of developing other
mathematical approaches and models. In [13 —
17], a new approach to solving problems of
impact and non-stationary interactions in an
elastic-plastic  mathematical setting was
developed [18 — 21].

In this paper it was compared the results of
solving two plane problems of the motion of a
circular rigid cylinder with a flat on an elastic
layer: 1) impact within a strictly elastic model;
2) no stationary interaction in elastoplastic
formulation. At the initial moment the circular
cylinder contacted with the surface of the layer
along the plane of the flat.

PROBLEM FORMULATION

Firstproblem.Thehardcircularcylinderwitht
heflatmovesverticallydownperpendiculartothes
urfaceoftheelasticlayero <z <Hand contacts
it along the lane {|x|<d; z=0}, where d —
half width of the flat. As in [1 — 3] we
associate a cylindrical coordinate system rOz’
with a moving cylinder, axis z coincides with
the axle of the cylinder. We associate with a
layer a fixed Cartesian coordinate system xyz
[5-17].

The stamp penetrates (Fig.1) an elastic
layer at a speed V4 (t), (0<t<T)with initial

value Vo =V7(0), where T is the time of

interaction of a stamp with a layer. We
introduce dimensionless variables.
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where p,u, K,C, andC;s is the density, the

displacement module, the volume deformation
module and the velocity of the waves in the
elastic layer.

The motion [1 — 3] of an elastic layer is
described by scalar potentials pandy, which
satisfy the wave equations [5 — 7]:

02 02 %> 8
:2—@2’ Ay = Y oa=
oot

A

When problem solving an approach is used
[1 — 3], which makes it possible at the initial
stage of penetration to identify the linear
coordinates along the surface of the layer and
body [5 — 7]. As a result, approximate ratios
will be executed.

r~0, ctgd~1/6. )

In the contact area, taking into account (1),
there is a relationship between u, and pressure

p.
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Fig.1. Scheme of the system stamp-layer

U, (t,%,0) = wr (t) - H(| x| -d) x
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x(l—w/l—(lxl—d)z), 2

t
wr (1) = [V (x)dt, p(t,X) = =0, (t,x,0), [X|< X .
0

Linear zed boundary conditions are as
follows:

ou,

EZZOEV(t'X):VT(t)’ X <x (), €))

Sl =0, [X>Xx"(1), (@)

GZX|Z:0 =0, |X| < o,

On the surface of the layer z =h there are
conditions of hard jamming.

For interaction time O0<t<T select a
rectangle {|x|<I, 0<z<h}, which s
occupied by the medium, and the task of
impact on the layer can be considered as a
problem of impact on a rectangle. The width of
the rectangle | is chosen so that the
perturbation waves do not reach its
boundaries:

| x|=1 I>oc(T—to)+x*(t0), ddit
t=t,

For certainty, we choose the condition of a
smooth sliding contact on the lateral surface of
the rectangle. Initial conditions of the problem
are zero.

0, =0,

Uxhx‘ | sz|‘x‘:| (5)
op oy

(P|t:0 = Et—o =0, W|t:0 = Et—o =0.

The motion of a cylinder as a body outlines
the second law of Newton

2
M S = (D), V2 0)=Vo, wr (0)=0, (9

70

where F(t) — the reaction strength of an
elastic layer, which is determined considering
(2), (4) as an integral from pressure in the
contact region:

X (1)
F(t)=2 [ p(tx)dx.
0

The boundary of the contact area X, taking
into account the motion of the particles of the
medium and retarding the penetration of the
cylinder in the elastic medium, is determined
from the condition:

wr (1) = U, (t,x,0) —H (X" |-d) x

x(l_m)_{o' K<)

<0, |x>x(t).

Second problem. Its  mathematical
formulation is the same as in [10, 11, 13, 16,
17]. Deformation of a beam sample in the
form of a rectangle > =Lxh
(-L/2<x<L/2;0<y<h) is considered.
The beam samples based on a completely rigid
basis along {-L/2<x<L/2; y=0}. The
thickness of the sample is considered so large
that it would be possible to wuse the
dependences of the plane strain state.

On top of the body a completely hard
impact or contacts with beam along the
segment {|x|<d; y=h}. Its effect on the

body in the contact area will be replaced
evenly distributed normal stress —P which
varies with time as a linear function

P=po+ popx(t/At-1), where At -

increment of time.
Given the symmetry of the deformation

process with respect to the line X=0, only
the right part of the transverse section of the
body is considered further (Fig.2).

As a result of the impact load we will
consider that the material is elastic-plastic with
strengthening and calculation of fields of
stresses, deformations and their increments, in
particular, increments of plastic deformation
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intensityde” and the parameter of the

Odquist/cz_[dgip will be carried out on the

basis of numerical solution of the
corresponding dynamic elastic-plastic
problem.
y
P
h
|
1
I
0 d L2~

Fig.2. Scheme of the system stamp-layer.
Second problem

When calculating the dynamic fields of
stresses and deformations the interaction of
wave fields, reflection from the boundary of
the body were not taken into account.

The equations of motion for a plane
problem are used

aGXX + aaxy _ 62ux
OX oy ot?

do,, 0o 8%u
vy 9%y y

x oy o

: (7)

where p -material density.

The boundary conditions of the problem,
which follow from the assumption that the
region of application of the forces of the
reaction of the supports is unaltered, as well as
the determination of the supporting reactions
have done using static methods, are written:

x=0; 0<y<B: uy=0, oy =0;

L
X=E, 0<y<B: oy =0, gy =0;

y=0, O<x<%: uy =0, oy =0; (8)
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y=h, 0<x<d: o, =-P, oy =0;

y=h, d<x<%: oy =0, oy =0.

Initial conditions are zero. In the basis of
the defining relations of the mechanical model,
the theory of no isothermal plastic flow of the
medium with the strengthening under the
condition of Huber-Mises fluidity [10, 11, 13,
16, 17] was applied. The effects of creep and
temperature expansion are neglected. Then,
considering the components of the
deformation tensor by the sum of the elastic
and plastic components of it [10, 11, 13, 16,
17], we obtain for them

j it

1
_ o p e _
&ji =& +8i gij—gsij"'KO—"‘(”l’

9

dgijpzsijdi, ( )
heres;; = ojj — gjjo — components of the stress
tensor deviator; &;; - a symbol of Kronecker; G
— displacement module; K;=(1-2v)/(3E); E

— modulus of elasticity; v -Poisson's
coefficient; K =3K;— the volume compression

module, which binds to the
ratio ¢ = Ko + ¢ volumetric expansion 3¢
(temperature expansion ¢ =0);
o =(oyy +0oyy +0y,)/3-average tension;
di— some scalar function, which is

determined by the condition of plasticity (the
shape of the surface of the load) and in view of
the above, its choice quadratic ally depends on
the components of the deviant stress Sij [10, 11,
13, 16, 17]. The material is strengthened with a
strengthening factor n« [10, 11, 13, 16, 17]:

7
os(T)= Uoz(To)( +@] ,

)

=220 1 _20c. (10

where og(T) - the line of fluidity after
strengthening the material at a temperature T .
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Fig. 3. The vector of the displacement
component U,

SCHEME AND METHODS NUMERIC
REALIZATION

The scheme, methods of solving and
numerical realization of the first problem are
the same as in [1, 2] and for the second
problem — are the same as in [10, 11, 13, 16,
17]. The application of the finite difference
method to the solution of wave equations is
justified in [22] and ensure the accuracy of
calculations with an error of not more

than O((Ax)2 +(Ay)? + (At)z) .

As example an aluminum layer was chosen
1 =0.3582K . The figures below represent the
results corresponding to the calculation
whenV, =0.0002, h/R=0.01, M =0.001,
1=0.6, T =0.05, h=0.4, d=0.02;
At =4.166667E-5.

The results of the calculation for the second

problem are obtained for the following
parameters values: the coefficient of

strengthening  the  material 1+ =0,05;
L=600 mm; h=400 mm; d =2 mm;
Po1 = 10.1 MPa; Po2 =404 MPa; M=80;
N=101. The smallest step of the partition was
near the upper surface and equaled 0,01 mm,
(AXqin = 0,01 mm; AYp,i, = 0,01 mm (only the
first three layers)), T =50°.

In the elastic-plastic model, the axle
Oy coincides with the axis Oz'. In Fig.3

shows the components of the displacement
vectors U, in the first problem and -u,in the

second are shown at the Fig.3 and denoted by

72

%

o/\/

T T
3.21E-07 4.17E-07

5.13IE-07 t

Fig. 4. Rejection of results

u,. The components of vector displacements
u, in the point (0, 0) in the center of the

contact area for the first problem in the elastic
model (dashed line) and at the point (0.01,
399.99) for the second problem in the elastic-
plastic formulation (solid line) were compared.

The percentage of rejection of the
displacement values u,received for the first

and second tasks is shown at the Fig.4. A
period has been found for which this deviation
does not exceed 8%.

CONCLUSIONS

The results of solving plane problems of the
impact of a circular cylinder with a flat in an
elastic model and a non-stationary interaction
in an elastic-plastic mathematical setting at the
elastic stage coincide well. The use of
elastoplastic formulation makes it possible:

1. Determine the stress-strain state at the
points determined by the grid of the
breakdown of the calculated region, and not
only on the surface.

2. Give a plausible description of the
development of plastic deformations. The step
corresponding to plasticity is the continuation
of the elastic stage.

3. Authentically determine the destruction

toughness K.

4. To verify the solving of problems in the
elastic-plastic formulation of the first steps in
time, when the deformation process is elastic,
it is convenient to use the solution of the
corresponding elastic problem.
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Yaap kpyrosoro uuJiMHapa
C JIBICKO 110 YIIPYIOoMY CJIOKO

Braoucnas Bocoanos

AHHOTamms. 3aJauyd yAapHOTO HarpyKeHUs
TBEpAbIX  NeOPMHUPYEMBIX  Tell  OCTalOTCS
aKTyaJIbHBIMH M HCCIIEAYIOTCS B CaMbIX pPa3HbIX
MocTaHOBKax. B pabore MpoBOIMTHCS CpaBHEHHE
pEe3yNbTaToOB pellleH!s ABYX IIOCKUX 3ahad: yaapa
KpyroBOro IWIHMHIpa C IUIOCKOW IUIOIIAIKOM
MapaIeTbHOW OCH MUIUHPA (JBICKON) C YIPYTUM
CJIOEM U BTOPOH — O MJIOCKOM JAe(hOpMUPOBAHHOM
COCTOSIHMM IPU HECTAL[MIOHAPHOM B3aUMOJCHCTBUH
KpPYTOBOTO LIMJIMHAPA C JIBICKOH C YIPYTHM CJIOEM
B UYHACTO YNOPYyrol U  yHNpPYyroOIUIACTHYECKON
MaTeMaTHYECKUX IIO0CTaHOBKaX COOTBETCTBEHHO.
IlepBoHauanbHBIi ~ KOHTAKT  MPOUCXOAMT IO
IJIOCKOCTH JIBICKHU. IToka3ano xopotiee
COBIIQJICHUE pE3yJIbTaTOB BTOPOM 3ajaud Ha
Ha4yaJIbHOM YIPYIOM 3TaIle ¢ Pe3y/IbTaTaMu NepPBOH
3aa4H.
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Pazpaboran HOBBI MOOXOX peUICHUS 3aaad
yaapa W HECTallMOHApHOTO B3aWMOJICHCTBHA B
YOPYTOIUIACTUYECKOH MOCTaHOBKE. UMCIIEHHOE
pelleHrne MOJMYYeHO C HCIOJIb30BAHUEM CXEMBI
MeToZla KOHEYHBIX pa3HocTeil. Hcnonb3oBaHue

YIPYIomaacTH4eCKon MIOCTaHOBKH Jaer
BO3MOXXHOCTB: 1)  ONpEAeNUTh  HAMpPSHKEHHO-
ne(pOpMUPOBAHHOE  COCTOSIHHE B TOYKaXx,

OTIpENEISIEMBIX  CETKOM pa30WeHHs pacdeTHOM
o0iacTd, a He TOJIBKO Ha IIOBEPXHOCTH, 2) AaTh
JIOCTOBEPHOE OIHCAHUE PA3BUTHUS IUIACTHUECKHUX
nedopmanmii — 3Tar, OTBEYAIOITHI IIIACTHYHOCTH,
SIBIISIETCS.  TPOJOJDKEHHWEM  YOPYroro  JTara,
3) IOCTOBEPHO ONPEACIUTH BI3KOCTh Pa3pyLICHUS.
Pazpaborana METOMKA pacuera nosei
miacTudeckux  gedopMamuii. = W BSI3KOCTH
paspylleHus Marepuaiga C  HCIOJb30BaHHEM
pelcHuA JUHAMHNYCCKUX IIJIOCKUX 3aga4 (6]
HanpspKeHHO  1e(OPMUPOBAHHOM — COCTOSIHUH B
VIOPYTOIUIACTUYECKOH  IOCTAaHOBKE C  YYETOM
BO3MOXXHOM  pa3rpy3ku Mmarepuana. 4. s
BepuUpHUKAIIMKM pemieHus] 3afad B YIOpyro-Iiac-
TUYECKOM TIOCTaHOBKE IS TEPBBIX IIIarOB TIO
BpEeMEHH, KOorja mpolecc AeopMaiuu SBISETCS
yOpYruM,  yIOOHO  HWCIOJIB30BAaTh  pEIICHHUE
COOTBETCTBYIOUICH YIIPYroW 3a/1auH.

KiroueBble cioBa: ynap, yOpyruu, ymnpyro-
IUTIAaCTMYCCKHUM, CIIOM, IIOCKas 3ajada, >KSeCTKUM
LVTAHID.
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