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Abstract. The approach to estimating the pa-

rameters of linear econometric dependencies for 

the case of combining a number of special condi-

tions arising in the modeling process is considered. 

These conditions concern the most important prob-

lems that arise in practice when implementing a 

number of classes of mathematical models, for the 

construction of which a matrix of explanatory vari-

ables is used. In most cases, the vectors that make 

up the matrix have a close correlation relationship. 

That leads to the need to perform calculations us-

ing a rank deficient matrix. There are also viola-

tions of the conditions of the Gauss-Markov theo-

rem. For any non-degenerate square matrix X , an 

inverse matrix
1X -
 is uniquely defined such that, 

for random right-hand side B , the solution of the 

system X Bb =  is vector
1X b-b = . If X  is a de-

generate or rectangular matrix, then there is no 

inverse to it. Moreover, in these cases, the sys-

tem X Bb =  may be incompatible. Here it is natu-

ral to use a generalization of the concept of the 

inverse transformation, which is formulated in 

terms of the corresponding problem of minimizing 

the sum of squared residuals. In the same case, 

having a QR decomposition, one can use the for-

mula 1

1X R Q+ - ¢= . In addition, it is recommended 

for specific calculations. With an incomplete rank, 

the most convenient form of representation
1X -
 

follows from the expansion in characteristic num-

bers. If X U V= å with non-zero characteristic 

 

 

numbers, then X V U+ + ¢= å . We propose an 

alternative X +
calculation method, which relies on 

the decomposition of a rank deficient matrix into 

the product of two matrices of full rank. 

Keywords: econometric model, matrix of in-

complete rank, Gauss-Markov conditions, pseu-

doinverse matrix. 
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INTRODUCTION 

 

There are several mathematically equiva-

lent expressions for a matrix pseudo-inverse 

of X . If X is not degenerate, then X X+ ¢= . 

When X  has a full columnar rank, its pseudo-

inverse matrix can be represented 

as
1( )X X X X+ -¢ ¢= . 

In the same case, having a QR schedule, 

one can use the formula 1

1X R Q+ - ¢= , besides, 

it is strongly recommended for specific calcu-

lations. With incomplete rank X , the most 

convenient form of representation
1X -
 follows 

from the schedule by characteristic numbers. 

If X U V= å withV non-zero characteristic 

numbers, then X V U+ + ¢= å . This article pro-

poses an alternative calculation method based 

on the decomposition of a rank deficient ma-

trix for the product of two full rank matrices. 

 

METHODOLOGY 

 

Let there be a linear relationship between 

the variableY  and m explaining variables 

1 2 m, ,...,X X X and the perturbation ,  is a 

random variable, emphasizing that only the 

existence of second-order finite moments is 

necessary. 

If we have a sample of n  observations over 

variables , 1,2,... ,jX j m= , then we can write 

 
m

i ij j i

j=1

=y x i nå .  (1) 

 

Equations (1) can be written in matrix form: 

Y X= b+e  , where (2) 

 

1 11 12 1 1 1

2 21 22 2 2 2

1 2 m n

β εβ ε
,  ,  

β = , ε =β εm

m

n n n nm

y x x x

y x x x
Y X

y x x x

æ ö æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷= =
ç ÷ ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷

è ø è øè ø è ø

ö2 1mx2 12 1

÷
2 1m2 1 öö2 1m2 1

÷
÷2 2mx2 22 2

÷÷
x

÷
,  
β =çXX

÷ ç ÷
,  X,  ,  çç=XX

ç
÷ ç ÷
÷ ç ÷÷ ç ÷

ç
çç

÷
÷
÷÷ ç ÷ε =

÷ ç ÷
, ε ç ÷ç ÷ε =
÷ ç ÷
÷ ç ÷÷ ç ÷

÷
øn nmxn nn n

÷÷÷
 

 Let’s denote through X ¢  and ε¢ the matri-

ces transposed to X  and , respectively. 

Let the following conditions be met:

 

1) ε 0M =                                                    (3) 

2) 
2( ) ,M E¢ee = s ×  

 

where E  is the unit matrix;                         (4)

3) X is a matrix whose elements are determin-

istic numbers;                                       (5) 

4) rank X <m(matrix X -incomplete rank)  (6)

 

In many econometric studies, the assump-

tions [ ]10 14-  of dispersion constancy and the 

absence of perturbation correlation (4) seem to 

be unrealistic. Thus, when examining consum-

er budgets, one can see that the variance of 

residuals relative to the regression line in-

creases with increasing profits. Similarly, in 

the analysis of firms activities, the variance of 

residuals should probably increase with the 

size of firms. 

Therefore, condition (4) should be replaced 

2( )M D W¢ee = = s ,  (4') 

where D  is the covariance n n´  – matrix[ ]19 . 

The estimates according parameter b  least 

squares in (1) are defined as the 1 2, , mb b bb b mbb  

minimizing values 

 

1 1

( )

( )

( )  ,min

n n

i ij j

i k j

k kj j ik

j

L y x

y x

= =

b

= - b ×

- b a ®

åå å

å

×))

)

i k j

))

  (7) 

 

where the matrix ikA = a  is symmetric, de-

cidedly defined n n´  is the matrix. The solu-

tion (7) 1 2, , mb b bb b mbb will be called the task 

pseudo-solution (1-2). The solution will be 

linear towards y . In addition, provided (3)
 1Pbb  

will be an unbiased value 1Pb  in (1). 

That is, 
 

1 1( )M P Pb = b= b)) PP))
   (8) 

 

1P
 
is orthoprojector. 
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The solution, generally speaking, will not 

be the only one. We will try to minimize the 

amount 

2

1

( min)
m

j

j=

b ®å .   (9) 

 

Then the solution (7) is unique and is called 

the normal pseudo-solution of the problem (1–
3, 4', 5, 6). When A D E× =  – solution (7) is 

optimal. The Gauss-Markov theorems take 

place here. 

For case (6), unbiased estimates b  are im-

possible, but some unbiased linear combina-

tions of unknown parameters can be estimated. 

Let be X  a non-degenerate matrix, then the 

solution (1, 2) can be written in the form 

 
1 1X Y X- -b = + e1 1b = 1 1X YY1 11 1XX 1 11 1

 , 

 

where 
1X -
 – the matrix is inverted to X . An 

inverse matrix is a very useful mathematical 

concept and often needs to be calculated
1X -
. 

In the case of a problem (MLS), the question 

arises whether there is a m n´ matrix Z , 

which uniquely defined by the matrix X  and it 

is such that a solution for single minimum 

length 
2( min)ib ®å  (MLS) is expressed by 

the formula ZYb = ZYb = . 

Such a matrix Z does exist [20], it is called 

a pseudo-inverse of the matrix X  and is denot-

ed X +
. For the sake of simplicity, we put 

itW E= . 

The matrix X +
 is uniquely determined by 

the matrix X  and does not depend on the spe-

cific orthogonal decomposition [ ] 20 .X  For 

each , 1j j n£ £  j  is the column of the ma-

trix jX  can be written in the form j jX X e+=
 

where je  j - the column of a single matrix E  

So X Y+b = X Y+b = . The purpose of the article is 

to constructively define and calculate X +
. 

 

Definition 1. 

For random n m´  matrix X , the pseudo-

inverse matrix, denoted X +
, is the m n´  ma-

trix j - the column of which is the only mini-

mum length (MLS) solution.
 jX eb = eb . 

 

Definition 2. 

Matrix X +
 of a m n´  size is called a 

Moore-Penrose pseudo-inverse matrix for ma-

trix X , if it satisfies the following four condi-

tions 

 

1) X XX X+ + +=  

2) XX X X+ =  

3) ( )X X X X+ +¢ =  – symmetrical 

4) ( )XX XX+ +¢ =  – symmetrical. 

 

From the condition X XX X+ + +=  it fol-

lows X XX X X X+ + += . 

Denote 1X X P+ = , then
2

1 1P P= , that is 

1P  – idempotent. 

Similarly 2XX P+ = . 

From conditions (3, 4) we obtain 1P
,
 2P

 
or-

thoprojectors [21]. It can be proved that the 

general solution of problem (1) is expressed by 

the formula 

 

1( )X Y E P C+b = + -+b = +X YY+ , 

 

where C  is a random vector. 

One can prove that a matrix defined X +
al-

ways exists and is a unique one. If X  is a non-

degenerate square matrix, then 
1X X+ -=  ob-

viously satisfies the conditions (1–4). 

 

Theorem 1. 

If the X n m- ´  matrix n > m  and 

rank X = m , that is, has a full rank, 

then
1( )X X X X+ -¢ ¢= . If the X n m- ´  matrix 

m > n , then 
1( )X X XX+ -¢ ¢= . 

 

Proof. 

Let X  be a full rank matrix. 
1( )z X X X-¢ ¢= . 

Let's check the Moore-Penrose conditions. 

Let it n > m . 
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Proof. 

Let X  be a full rank matrix. 
1( )z X X X-¢ ¢= . 

Let's check the Moore-Penrose conditions. 

Let it n > m . 

[ ]

1 1

1

1

1

1

1

1

1)  ( ) ( )

( )

2)   ( )

3)  ( ) orthoprojektor

symmetrical 21

4)  ( ) ymmetrical .

ZXZ X X X X X X X

X X X Z

XZX X X X X X X

ZX X X X X P

P

XZ X X X X s

- -

-

-

-

-

¢ ¢ ¢ ¢= =

¢ ¢= =

¢ ¢= =

¢ ¢= = - Þ

Þ -

¢ ¢= -

 

Let it
1, ( )m n Z X XX -¢ ¢> =  

[ ]

1 1 1

1

1

2

2

1

1)  ( ) ( ) ( )

2)  ( )

3)  ( )  orthoprojektor

symmetrical 21

4)  ( ) symmetrical .

ZXZ X XX XX XX X XX Z

XZX XX XX X X

XZ XX XX P

P

ZX X XX X

- - -

-

-

-

¢ ¢ ¢ ¢ ¢ ¢= = =

¢ ¢= =

¢ ¢= = - Þ

-

¢ ¢= -

 

Moore-Penrose conditions are necessary 

and sufficient for the matrix Z to be equal X +
 

[2]. 

The theorem is proved. 

 

Lemma 1. 

Let it be the X n m- ´  matrix 

rang X=r ( )r m n< < .

 
Then X AB= , A n r- ´  – is a full rank ma-

trix, – B r m- ´  is a full rank matrix. 

 

Proof. 

Let it { }1 2, , , mX X X X= }, , mX, , , jX
 
is a column 

X ( 1, )j m= . Let { }1 2, , , rA X X X= }, rX, , where 

1 2, , , rX X X, , rX, ,  are the basic columns. Then 

any jX  is a linear combination of basis col-

umns 

1 1

.
r r

j kj k ij ik kj

k k

X b X x x b
= =

= Þ =å å  so 

( X AB= ). 

(1, ) (1, ) (1, )

(1, ) (1, ) (1, )

; ;i n j m i nik kj ij

k r k r j m

A x B b x= = =

= = =

= = . 

 

A  contains r  base columns, therefore 

rangA=r . B contains all columns of a single 

matrix E . So rangB r= . Lemma proved. 

X AB=  and by theorem 1
1( )A A A A+ -¢ ¢= , 

1( )B B BB+ -¢ ¢= . 

 

Theorem 2. 

 
1 1( ) ( )X B BB A A A+ - -¢ ¢ ¢ ¢=  

 

Proof. 

It is known that 
1 1 1( )AB B A- - -= . Pseudo-

inverse equality ( )AB B A+ + +=  is not always 

fulfilled. 

Let us prove that 

 
1 1( ) ( ) ( )X AB B A B BB A A A+ + + + - -¢ ¢ ¢ ¢= = = . 

 

Let's check Moore-Penrose's conditions for 

 
1 1

1

( ) ( )

1) ( ) ( )

Z B BB A A A

ABZAB ABB BB A A A AB AB

- -

-

¢ ¢ ¢ ¢=

¢ ¢ ¢ ¢= =
 

1 1 1 1

1 1

2) 

( ) ( ) ( ) ( )

( ) ( )

ZABZ

B BB A A A ABB BB A A A

B BB A A A Z

- - - -

- -

=

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢= =

¢ ¢ ¢ ¢= =

 

1 1

1

1

3) ( ) ( )

( ) symmetrical

ZAB B BB A A A AB

B BB B P

- -

-

¢ ¢ ¢ ¢= =

¢ ¢= = -
 

1 1

1

2

4) ( ) ( )

( ) symmetrical .

ABZ ABB BB A A A

A A A A P

- -

-

¢ ¢ ¢ ¢= =

¢ ¢= = -
 

 

So Moore's conditions are fulfilled, and 

therefore ( )Z AB B A X+ + + += = = . The theo-

rem is proved. 

The solution (1, 2) bb  is determined simul-

taneously: 1( )X Y E P C+b = + -+b = +X YY+XX . Vector C is 

random. 

Therefore, if the matrix X is incomplete, 

then it is impossible to find an unbiased  

value bb . Consider bb  the normal solution to 

problem (1, 2). Indeed, 
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1 1

1 1

1 1

1 1 1

1 1

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

,   .

X Y AB Y

B BB A A A AB

B BB A A A AB

B BB A A A

B BB B B BB A A A

P X M P

+ +

- -

- -

- -

- - -

+

b = = =

¢ ¢ ¢ ¢= b+ e =

¢ ¢ ¢ ¢= b+

¢ ¢ ¢ ¢+ e =

¢ ¢ ¢ ¢ ¢ ¢= b+ e =

= b+ e b = b ¹ b

+ +b = X YY+ +YY

( ) (( ) (( )

b = b ¹ bM PM

 

 

Definition 2. 

The bb  parameter value is called X  –
unbiased if MX Xb = bb = bX XX X . 

 

Lemma 2. 

The value X Y+b = X Y+XXb = is an unbiased valueb  

 

Proof. 

We use (2), then 

 

( )X Y X X X X X+ + + +b = = b+ e = b+ e+ + +b = X YY+ + +YY  , 

 

hence from (3) and (9) 

 

( ) ( )

 .

M X M XX X XX

XX X X

+ +

+

b = b + e =

b = b

) ()) ()

 

 
Otherwise 

 
1 1

1 1

1 1

1 1

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) .

. 

B BB A A A AB

X AB ABB BB A A A AB

ABB BB A A A

AB A A A A X A A A A

MX X

- -

- -

- -

- -

¢ ¢ ¢ ¢b = b + e

¢ ¢ ¢ ¢b = b = b +

¢ ¢ ¢ ¢e =

¢ ¢ ¢ ¢= b + e = b + e

b = b

¢b = B ((¢((= ( ) ( )B ( ) ( )( ) ( )

¢b bX AB ABBX AB A ((¢(((

= B ((

b + (B AB A((

b = bX XX X

 

 

Lemma is proved. 

 
1

1( )M B BB B P-¢ ¢b = b = b¢bM BM B (¢(BB ((  . 

 

So, in general, bb  is a biased value of b . 

Let us estimate the variationbb  – disperse bb  

towards with Mbb : 

1 1 1 1

2 1 1 1

2 1 1 1

2 1

2 1

2 1

var

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )

( )

( ( ) )

( )

MB BB A A A A A A BB B

B BB A A A A A A BB B

B BB A A BB B

B BB A ABB B

B B AB ABB B

B BX XB B

- - - -

- - -

- - -

-

-

-

b =

¢ ¢ ¢ ¢ ¢ ¢ ¢= ee =

¢ ¢ ¢ ¢ ¢ ¢= s =

¢ ¢ ¢ ¢= s =

¢ ¢ ¢ ¢= s =

¢ ¢ ¢= s =

¢ ¢ ¢= s

b =

 

 

Consequence 1. 
1 1

2

1 1 1

( ( ) ) ( ) ( )

 ,

M B BB B B BB BM

PM P P

- -¢ ¢ ¢ ¢b = b =

= b = b = b

1 11 11 1 =( )( )1 11 1) ( ) () ( ) ()1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1

2

( )( )( b)))

b b2PP2

))
 

 

bb  is 1P  – an unbiased valueb . 

In generalbb  is defined ambiguously 

 

1( )  .X Y E P C+b = + -+b = X Y+XX
  

(10) 

 

Theorem 3. 

The covariance matrix ( β)D Xβ)ββ  of the βXβββpa-

rameter estimates βX  in model (2) is 

equal [ ]20  

 
2( β) σ ( )

D X X X X X+¢ ¢= 2β) (2β) σ (β 2
, 

 

where ( )X X +¢  – pseudo-inverse to ( )X X¢ . 

 

Proof. 

We use lemma (2): 

 

( ) , εX X X X X Y X X X+ + + + +¢ ¢= = +b .  (11) 

 

Then 

 

.X XX Y XX X XX X XX+ + + +b = = b+ e == b+ e+ + +bX XX YX X + + +X YX Y  

 

So using (3), (4), (9) we obtain 

 

( β) ( )( )
( , ( ) )

D X M X X X X

M XX XX+ +

¢= b- b b- b =

¢ ¢e e =

β) (β)β (((
¢ =

)( ))()(
¢
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2

2

( ( ) ( ) )

( ) ( )( )

( ) .

M X X X X X X X X

X X X X X X X X

X X X X

+ +

+ +

+

¢ ¢ ¢ ¢ ¢= ee =

¢ ¢ ¢ ¢= s =

¢ ¢s

 

 

Otherwise 

 

( ) ( )( )D X M X X X X ¢b = b- b b- b =¢ =) ( )( )) ( )( )) ( )(( ¢  
1 1 1

1 2 1 2

2

( ( ) ( ) ( )

( ) ( ) .

M ABB BB A A A A A A

BB BB A A A A A P

- - -

- -

¢ ¢ ¢ ¢ ¢ ¢= ee ×

¢ ¢ ¢ ¢= s = s
 

 

The theorem is proved. 

 

Consequence 2. 

( )D Xb)  does not depend on non-basic vec-

tor-columns of the matrix X . 

Suppose that 

1

2

m

c

c
c

c

¢æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

ç ÷
ç ÷
ç ÷ç ÷

ç ÷
ç ÷ç ÷

 belongs to the linear 

shell of the rows 1 2, , , nx x x, , nx, , n of the matrix X. 

Then c X= g  where 

 

{ }1 2, , , ng = g g g }ng, . 

 
Then according to (11) 
 

( )X M X XX +g b - g b = g e+b e( )( )M X XXM X X( )( )( ) +
. 

 

Besides, c X= g , ( )M c cb = bb)) cc) . 

Therefore, we get 
 

2

2

( ) ( )( )

( )( )

( )

( ( ) ( ) )

( ) ( )

( ) ( )  .

D c M c c c c

M X X X X

M XX X X

M X X X X X X X X

X X X X X X X X

X X X X c X X c

+ +

+ +

+ +

+ +

¢b = b - b b - b =

¢g b - g b g b - g b =

¢¢ ¢ ¢= g ee g =

¢ ¢ ¢ ¢ ¢ ¢g ee g =

¢ ¢ ¢ ¢ ¢= s g g =

¢ ¢ ¢ ¢ ¢s g g =

¢ =) ( )( )) ( )( )) ( )( ¢= b - b b - b =( )( )( )( )( )(( )(( )(

¢ =)( )))(( ¢

=))( )(( )(( )(

 

 
CONCLUSIONS 

 

Thus, if the matrix of an accurate system is 

incomplete, then minor values of the perturba-

tions of the input data and rounding errors will 

not necessarily lead to the appearance in the 

process of transformation of the system any 

rows or columns consisting entirely of the 

same small elements. This is the main, but not 

the only, difficulty in constructing numerical 

methods for decomposing systems with rank 

deficient matrices, which is built on equivalent 

transformations of the original system. 

Another difficulty is connected with the 

reasoning for further transformations of those 

systems whose matrices have rows and col-

umns with minor elements. 

If the input data of a system with a rank de-

ficient matrix is given with errors, no increase 

in the accuracy of the calculations and no 

transformations will provide the guaranteed 

accuracy of a normal pseudo-solution. This 

requires additional information about the exact 

task involved. But suppose that after the uni-

tary transformations, a system with small rows 

or columns is obtained. Replacing these rows 

and columns with zero values is equivalent to 

a small perturbation of the initial system ma-

trix. If we can accurately find the normal 

pseudo-solution of the resulting system, it will 

mean that the projection of the normal pseudo-

solution of the exact system on one of the sub-

spaces drawn on singular vectors will be cal-

culated sufficiently accurately. There is no 

reason to expect a better result without addi-

tional information. 

 

REFERENCES 
 

1. Johnston J., 1971. Econometric Methods. 

MeGraw-Hill, 437. 

2. Lawson C.L., Hanson R.J., 1974. Solving Least 

Squares Problems. Prentice-Hall, Inc., Eng-

lewood Cliffs N.J., 340. 

3. Voevodin V.V., 1977. Vychislitel`nye osnovy 

lineinoi algebry [numerical foundations of linear 

algebra]. Moscow, Nauka, 303 (in Russian). 

4. Kutovyi V.O., 2001. Pro teoremu Haussa-

Markova u vypadku vyrodzhenoi matrytsi 

sposterezhen. Dopov. Dokl. Akad. Nauk Ukraine, 

No.5, 19-22 (in Ukrainian). 

5. Kutovyi V.O., 2000. Pro zastosuvania instru-

mentalnyh zminnyh dlia vyznachenia parametriv 

zagalnoi liniynoi modeli Modeliuvayia ta infor-

maciyni systey v economici. Kyiv.KNEU, No.64, 

168-173 (in Ukrainian). 



Information Technology 

 

Transfer of Innovative Technologies 
2019 Vol.2, No.1, 68-74 

74 

6. Kutovyi V.O., Roskach O.S., 1997. 

Matematyko-statystychne uzagalnenia 

pokrokovyh metodiv pobudovy predyktornyh 

prostoriv. Mashynna obrobka informacii, No.59, 

140-149 (in Ukrainian). 

7. Kutovyi V.O., Roskach O.S., 1997. Pro 

zastosyvania na EOM algorytmu Farrara-

Glaubera.Mashyna obrobka informacii. Kyiv, 

KNEU, No.61, 142-149 (in Ukrainian). 

8. Kutovyi V.O., 1999. Pro umovy zastosuvania 

teoremy Gaussa-Markova. Vcheni zapysky Kyiv, 

KNEU, No.2C, 206-208 (in Ukrainian). 

9.  Kutovyi V.O., 2001. Pro efektyvnist zmishenyh 

ocinok parametriv economichnyh modelei. Kyiv, 

KNEU, No.3, 324-326 (in Ukrainian). 

10. Aitken A.C., 1993. One Least-squares and Line-

ar Combination of Observations. Proc., Royal 

Soc., Edinburgh, No.55, 42-46. 

11. Pavies O., 1993. Statistical moments in research 

and production, New York, 1957. 

12. Plackett R., 1960. Principles of regression analy-

sis. Oxford. 

13. Weatherburn C.E., 1961. A first course in 

mathematical statistics. University Press, Cam-

bridge, brosch, 18s, 6d, 278. 

14. Hamilton W., 1964. Statistics in physical sci-

ence. New York, 1964. 

15. 
Jürgen Grob., 2004. The general Gauss-Markov 

model with possible singular dispersion matrix. 

Statistical Paper, No.45, 311-336. 

16. Farrar D.E., Glauber R.R., 1967. Multi-

collinearity in Regression Analysis: The Problem 

Revisited. Review of Economics and Statistics, 

49(1), 92-107. 

17. Yangge Fian, Beisiegel M., Dagenais E., Hai-

nes C., 2008. On the natural restrictions in the 

singular Grauss-Markov model. Statistical Pa-

pers, Vol.49, 553-564. 

18. Silvey S.D., 1969. Multicallinearity and Impre-

cise Estimation. Journal of the Real Statical Soci-

ety, Series B, No.31, 539-552. 

19. Kutovyi V.O., Katunina O.S., 2017. Projecting 

predicators for econometric models with matrix 

of supervisory range obstructions. М6789:;а==>?а @=A6BCаD@E=@ FGF?8CG ; 8H6=6C@D@, КНЕУ,
No.94, 178-194. 

20. Viktor Kutovyi, Olga Katunina, Oleg Shutov-

skyi, 2018. Analysis of the multicollinear econ-

ometric model parameters with a rank deficient 

observation matrix. Transfer of Innovative Tech-

nologies, Vol.1(1), 75-88. 

21. 
АOPQRQS Н.И., ГYаR[а\ И.И.

 Т86BG> 9G=8E^=_` 6a8Bа?6B6; ; ГG9cd8B?6;6C aB6F?Bа=^F?;8.М6FH;а, НаeHа, 543. 
 

ОjklPmYQ\PP nmQjoppqSаr\ps [аrSPtkuvp\p[QrSPlQmvPO [poQYQs m[аrSPtQs\аqYwoQ\Ps \QnpY\pxp Sа\xа
 

 Вz{|}~ К�|}�}�, А��{�а��~  К�|}�}�, О��� Ш�|}��{z� 

 А\\prаtP�.
 РаFFC6?B8= a67`67 6D8=G;а=G>aаBаC8?B6; 9G=8E=_` �H6=6C8?BG�8FHG` �а;G^FGC6F?8E 79> F9e�а> F6�8?а=G> B>7а 6F6d_`eF96;GE, ;6�=GHа:�G` ; aB6D8FF8 C6789GB6;а^=G>. Э?G eF96;G> HаFа:?F> =аGd6988 ;а�=_`aB6d98C, ;6�=GHа:�G` =а

 aBаH?GH8 aBG B8а9G^�аDGG B>7а H9аFF6; Cа?8Cа?G�8FHG` C67898E,79> a6F?B68=G> H6?6B_` GFa69c�e8?F> Cа?BGDа6d�>F=>:�G` a8B8C8==_`. В d69c�G=F?;8F9e�а8; ;8H?6B_, G� H6?6B_` F6F?а;9>8?F> Cа?^BGDа, GC8:? ?8F=e: H6BB89>DG6==e: F;>�c.Ч?6 aBG;67G? H =86d̀ 67GC6F?G ;_a69=>?c ;_^�GF98=G> F GFa69c�6;а=G8C Cа?BGD_ =8a69=6�6Bа=�а. ТаH�8 GC8:? C8F?6 =аBe�8=G> eF96;G>?86B8C_ ГаeFFа-МаBH6;а. Д9> 9:d6E =8;_B6�^78==6E H;а7Bа?=6E Cа?BGD_ X  67=6�=а�=66aB87898=а 6dBа?=а> Cа?BGDа 1X -
 ?аHа>, �?6aBG aB6G�;69c=6E aBа;6E �аF?G B  B8�8=G8CFGF?8C_ X Bb =  de78? ;8H?6B 1X b-b = . ЕF9G

X  – ;_B6�78==а> G9G aB>C6e�69c=а> Cа?BGDа,?6 6dBа?=6E H =8E =8 Fe�8F?;e8?. Б6988 ?6�6, ;�?G` F9e�а>` FGF?8Cа X Bb =  
C6�8? 6Hа�а?cF>=8F6;C8F?GC6E. З78Fc 8F?8F?;8==6 a69c�6;а?c^F> 6d6d�8=G8C a6=>?G> 6dBа?=6�6 aB86dBа�6^;а=G>, H6?6B68 A6BCe9GBe8?F> ; ?8BCG=а̀ F6^6?;8?F?;e:�8E �а7а�G 

CG=GCG�аDGG FeCC_H;а7Bа?6; =8;>�6H. В �?6C �8 F9e�а8, GC8> QR
-Bа�96�8=G8, C6�=6 GFa69c�6;а?c A6BCe9e

1

1X R Q+ - ¢= . КB6C8 ?6�6, GC8==6 6=а B8H6C8=^7e8?F> 79> H6=HB8?=_` ;_�GF98=GE. ПBG =¡¢£¤¥¦¤§ ¨а¦ª¡ ¦а«¬¤¥¡¡ ®¤¬¦а̄ °¤̈ §а £¨¡®¢±²а³¥¡¦«¯ 1X -
 ³´²¡µа¡² «¶ ¨а¶¥¤·¡¦«¯ £¤ ¸а¢¨аµ²¡̈ «±²«¹¡±µ«§ ¹«±¥а§. Е±¥« X U V= å  

±
V  ¦¡¦¥¡³´§« ¸ӓ аµ²¡̈ «±²«¹¦´§« ¹«±¥а§«,²¤ X V U+ + ¢= å . На§« £¨¡®¥аªа¡²±̄ а¥¾²¡̈ ¦а¢²«³¦´¿ ±£¤±¤¬ ³´¹«±¥¡¦«¯ X + , µ¤²¤̈ ´¿ ¤£«¢¨а¡²±̄ ¦а ¨а¶¥¤·¡¦«« §а²¨«À´ X ¦¡£¤¥¦¤ª¤¨а¦ªа ¦а £¨¤«¶³¡®¡¦«¡ ®³¸ §а²¨«À £¤¥¦¤ª¤¨а¦ªа. КÂÃÄÅÆÇÅ ÈÂÉÆа:

 Ìµ¤¦¤§¡²¨«¹¡±µа̄ §¤¢®¡¥¾, §а²¨«Àа ¦¡£¤¥¦¤ª¤ ¨а¦ªа, ±¥¤³«¯ Га±±а-
Мӓ µ¤³а, £±¡³®¤¤¬̈ а²¦а̄ §а²¨«Àа. 


