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Abstract. The approach to estimating the pa-
rameters of linear econometric dependencies for
the case of combining a number of special condi-
tions arising in the modeling process is considered.
These conditions concern the most important prob-
lems that arise in practice when implementing a
number of classes of mathematical models, for the
construction of which a matrix of explanatory vari-
ables is used. In most cases, the vectors that make
up the matrix have a close correlation relationship.
That leads to the need to perform calculations us-
ing a rank deficient matrix. There are also viola-
tions of the conditions of the Gauss-Markov theo-
rem. For any non-degenerate square matrix X , an

inverse matrix X' is uniquely defined such that,
for random right-hand side B, the solution of the
system XB =B is vectorf=X"b. If X is a de-
generate or rectangular matrix, then there is no
inverse to it. Moreover, in these cases, the sys-
tem X3 = B may be incompatible. Here it is natu-
ral to use a generalization of the concept of the
inverse transformation, which is formulated in
terms of the corresponding problem of minimizing
the sum of squared residuals. In the same case,
having a QR decomposition, one can use the for-

mula X* = R™'Q,". In addition, it is recommended
for specific calculations. With an incomplete rank,

. . -1
the most convenient form of representation X
follows from the expansion in characteristic num-

bers. If X =U XV with non-zero characteristic
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numbers, then X" =V 2"U'. We propose an

alternative X calculation method, which relies on
the decomposition of a rank deficient matrix into
the product of two matrices of full rank.
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INTRODUCTION

There are several mathematically equiva-
lent expressions for a matrix pseudo-inverse
of X . If X is not degenerate, then X =X".
When X has a full columnar rank, its pseudo-
inverse  matrix can be  represented
as X" =(XX)'X'.

In the same case, having a QR schedule,
one can use the formula X* = R‘IQI', besides,
it is strongly recommended for specific calcu-
lations. With incomplete rank X', the most
convenient form of representation X ' follows
from the schedule by characteristic numbers.
If X =U 2V withV non-zero characteristic
numbers, then X" =V >"U’". This article pro-
poses an alternative calculation method based

on the decomposition of a rank deficient ma-
trix for the product of two full rank matrices.

METHODOLOGY

Let there be a linear relationship between
the variableY and m explaining variables
X,,X,,...,Xand the perturbation€ € is a
random variable, emphasizing that only the
existence of second-order finite moments is
necessary.

If we have a sample of 7 observations over
variables X = 1,2,...m,, then we can write

ininijJrsi, i=1,2,...n. (1)
=1

Equations (1) can be written in matrix form:
Y =XB+¢e , where (2)

0z TR M B, &

%) Y Xy Yo B, &)
Y= :,Xz , ,p= L le=

y n xnl an e 'xnm Bm 8n

Let’s denote through X' and ¢'the matri-
ces transposed to X' and €, respectively.

Transfer of Innovative Technologies
2019 Vol.2, No.1, 68-74

Let the following conditions be met:

1) Me=0 3)
2) M(e€)=0"-E,

where E is the unit matrix; 4)
3) X is a matrix whose elements are determin-
istic numbers; (%)

4) rank X <m(matrix X -incomplete rank) (6)

In many econometric studies, the assump-
tions [10 — 14] of dispersion constancy and the

absence of perturbation correlation (4) seem to
be unrealistic. Thus, when examining consum-
er budgets, one can see that the variance of
residuals relative to the regression line in-
creases with increasing profits. Similarly, in
the analysis of firms activities, the variance of
residuals should probably increase with the
size of firms.
Therefore, condition (4) should be replaced

M(eg=D=c"W, 4"

where D is the covariance 7xn — matrix[19].
The estimates according parameter 3 least

squares in (1) are defined as thep,,B,....B,
minimizing values

n n

L:ZZ(y[ _Zx,ij)'
i=l k=1 . j (7)
(yk _Zxijj)a‘ik _>H(IBI)II 5

J
where the matrix A4 =||0Lik|| 1s symmetric, de-
cidedly defined nxn is the matrix. The solu-
tion (7) PB,,By....B, will be called the task
pseudo-solution (1-2). The solution will be
linear towards y . In addition, provided (3) Plﬁ

will be an unbiased value B in (1).
That is,

M(PB) = Rp ®)

B is orthoprojector.
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The solution, generally speaking, will not
be the only one. We will try to minimize the
amount

(Z’ilﬁi — min). 9)

Then the solution (7) is unique and is called
the normal pseudo-solution of the problem (1-
3,4, 5, 6). WhenA4-D=FE — solution (7) is
optimal. The Gauss-Markov theorems take
place here.

For case (6), unbiased estimates [ are im-

possible, but some unbiased linear combina-

tions of unknown parameters can be estimated.
Let be X a non-degenerate matrix, then the

solution (1, 2) can be written in the form

B=X"Y+Xe,

where X' — the matrix is inverted to X . An
inverse matrix is a very useful mathematical

concept and often needs to be calculated X .
In the case of a problem (MLS), the question
arises whether there is a mXxnmatrixZ

which uniquely defined by the matrix X and it
is such that a solution for single minimum

length (O B7 — min) (MLS) is expressed by

the formula f%: ZY.

Such a matrix Z does exist [20], it is called
a pseudo-inverse of the matrix X' and is denot-

ed X". For the sake of simplicity, we put
it =E.

The matrix X* is uniquely determined by
the matrix X and does not depend on the spe-

cific orthogonal decomposition X [20]. For
eachj, 1<j<mn j is the column of the ma-

trix X; can be written in the form X, = X"e,
wheree; j-the column of a single matrix £

So BzX*Y. The purpose of the article is
to constructively define and calculate X~ .

Definition 1.
For random nXm matrix X', the pseudo-

inverse matrix, denoted X", is the mxn ma-

70

trix j- the column of which is the only mini-
mum length (MLS) solution. X' ﬁ =e,;.

Definition 2.

Matrix X* of a mxn size is called a
Moore-Penrose pseudo-inverse matrix for ma-
trix X' if it satisfies the following four condi-

tions

) X XX =X

2) XX*X =X

3) (X'X) =X"X — symmetrical
4) (XX") = XX" — symmetrical.

From the condition X XX =X" it fol-
lows X' XX X=X"X.

Denote X'X =P, thenP’=P, that is
B —idempotent.

Similarly XX* =P,.

From conditions (3, 4) we obtain ;, P, or-
thoprojectors [21]. It can be proved ;hat the

general solution of problem (1) is expressed by
the formula

B=X'Y+(E-R)C,

where C is a random vector.

One can prove that a matrix defined X al-
ways exists and is a unique one. If X is a non-

degenerate square matrix, then X" =X"" ob-
viously satisfies the conditions (1-4).

Theorem 1.
If the X-nxm matrixn>m  and
rank X =m, that 1is, has a full rank,

then X* = (XX) "' X'. If the X —nxm matrix
m>n, then X" = X'(XX")".

Proof.
Let X be a full rank matrix. z =(XX)"' X",

Let's check the Moore-Penrose conditions.
Letit n>m .
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Proof.
Let X be a full rank matrix. z =(XX)"' X",

Let's check the Moore-Penrose conditions.
Letit n>m.

) ZXZ =(XX)"' XX (XX)' X' =

=(XX)'X'=Z

2) XZX = X(XX)' XX = X

3) ZX =(XX)"' XX = P —orthoprojektor =

= P, —symmetrical [21]

4) XZ = X(XX)"' X' - symmetrical .
Letitm>n, Z=X'(XX")"

1) ZXZ = X'(XX'Y" XX'(XX')"

2) XZX = XX'(XX'Y'X =X

3) XZ = XX'(xx")"

P, —symmetrical [21]

4) ZX = X'(XX")" X — symmetrical .

- X'(Xx'y' =7

= P, — orthoprojektor =

Moore-Penrose conditions are necessary
and sufficient for the matrix Z to be equal X

[2].

The theorem is proved.

Lemma 1.

Let 1t be the X-—-nxm  matrix

rang X=r (r<m<n).

Then X = AB, A—nxr —is a full rank ma-
trix, — B—rxm is a full rank matrix.

Proof.
Let itX={X1,X2,...,Xm}, X, is a column

X (j=lLm). LetA={X,X,,...,X,}, where
X, X,,...,X are the basic columns. Then

any X, is a linear combination of basis col-

umns
X Zble :>x _Z lk kj*
(X—AB).
—”xk”’ “”)a —H H/ =) 5 ‘XUHI ) -
k=(1,r) j=(1,m)

Transfer of Innovative Technologies
2019 Vol.2, No.1, 68-74

A contains r base columns, therefore
rangA=r . B contains all columns of a single

matrix £. So rangB=r. Lemma proved.
X=AB and by theorem 14" =(A4'A)"'A,

B =B(BB)".
Theorem 2.
:BI(BB/)fl(AIA)fl Al

Proof.

It is known that (4B)' =B'4"
inverse equality(4B)" =B A" is not always
fulfilled.

Let us prove that

. Pseudo-

X"=(4AB) =B'A" =B'(BB) '(44)'4'.

Let's check Moore-Penrose's conditions for

Z=B'(BB)'(44)"'4

1) ABZAB = ABB'(BB') ' (A'A)A'AB = AB
2) ZABZ =
=B'(BB') ' (4'A)' AABB'(BB') '(A4'4) ' A’ =
=B'(BB)'(AA)'4=Z

3) ZAB = B’(BB')“ (A4 AAB =

= B'(BB')"' B = P —symmetrical
4) ABZ = ABB’ (BB Y4474 =
= A(A'A)™" A' = P, — symmetrical .

So Moore's conditions are fulfilled, and
therefore Z =(AB)" =B"A" = X". The theo-
rem is proved.

The solution (1, 2) ﬁ is determined simul-
taneously: p=X'Y +(E—P)C. Vector C is

random.
Therefore, if the matrix X is incomplete,
then it is impossible to find an unbiased

value B Consider B the normal solution to
problem (1, 2). Indeed,

71



Information Technology

B=X"Y=(A4AB)'Y =

=B'(BB') '(A'A) "' A'(ABB +¢) =

= B'(BB') '(A'A)"' A'ABB +

+B'(BB') ' (A'4) "' Ae =

=B'(BB') 'BB+B'(BB) ' (A'A) ' A=
= RB+X'e, MB=PB+p.

Definition 2.

The ﬁ parameter value is called X -
unbiased ifMXB:XB.

Lemma 2.
The value p=X"'Y is an unbiased value

Proof.
We use (2), then

B=XY=X"(XB+e)=X"XPp+X'c,
hence from (3) and (9)
M(XB)=M (XX XB+XX"e)=

XX XB=XB.

Otherwise

B=B'(BB') ' (A'A)" A'(ABP +¢)
XP=ABp = ABB'(BB') ' (4'4)" A'ABp +
ABB'(BB'Y ' (A'A)' A's =

= ABP+ A(A'A)"' A'e = XP+ A(A'4)" Ae.
MXB = XP.

Lemma is proved.
MP=B'(BB)'Bp=Pp .

So, in general, ﬁ is a biased value of f.

Let us estimate the VariationB — disperse B

towards with M B :
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VarB =
=MB'(BB") '(A'A) "' A'ec’A(A'A)"(BB")'B =
=6’B'(BB") ' (A'4) " (4'A)(A'4)"(BB)B =
=6’B'(BB) ' (A4)"(BB")'B =
=6'B'(BB'A'ABB)'B =
=6’B'(B(AB) ABB')'B =
=o’B'(BXXB')'B
Consequence lﬁ. R
M(B'(BB'Y"'BB)=B'(BBY'BM(B) =
=PRMB=PRB=PFp,

B is B — an unbiased valuef} .

In general B is defined ambiguously
B=X'Y+(E-P)C. (10)

Theorem 3.
The covariance matrix D(XE) of the XE pa-

rameter estimates XB in model (2) is

equal [20]
D(XB) =0’ X (XX) X',
where (XX)" — pseudo-inverse to (XX).

Proof.
We use lemma (2):

X' =(XX)' X, X'Y=X"XB+X'c. (11)
Then

XP=XX'Y = XX XP+XX'e= XP+XX'e.
So using (3), (4), (9) we obtain

D(XB) =M (XB—XB)(XB—XPB) =
M(XX 6,6/ (XXY) =

Transfer of Innovative Technologies
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=M(X(XX) X'ee X(XX)" X" =
=" X(XX)"(XX)XX) X' =
cCX(XX) X',

Otherwise

D(XB)=M(XB-XB)XB-XP) =
=M (ABB'(BB) ' (A'A) "' A'ec’A(A'A)™" -
(BB'Y'BB'A=c"A(AA)"' A4 =c’P,.

The theorem is proved.

Consequence 2.

D(XP) does not depend on non-basic vec-
tor-columns of the matrix X .

’
Cl

Suppose that ¢ = belongs to the linear

c

m

shell of the rows x,,x,, --,x, of the matrix X.

Then ¢ =vyX where

v={Y Vo o V.l

Then according to (11)
YXB— M(yXB) = XX e.

Besides, ¢ =X, M () =cp.
Therefore, we get

D(cB) = M(cB—cP)(cp—cB) =

M(yXB -y XB)XB—yXP) =

=M XX ee' X" X'y =

MEX(XX) X'ee' X(XX)' X'y') =

=YX (XX)Y XX (XX) X'y =

VX (XX) X'y =c(XX) ¢ .
CONCLUSIONS

Thus, if the matrix of an accurate system is
incomplete, then minor values of the perturba-
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tions of the input data and rounding errors will
not necessarily lead to the appearance in the
process of transformation of the system any
rows or columns consisting entirely of the
same small elements. This is the main, but not
the only, difficulty in constructing numerical
methods for decomposing systems with rank
deficient matrices, which is built on equivalent
transformations of the original system.

Another difficulty is connected with the
reasoning for further transformations of those
systems whose matrices have rows and col-
umns with minor elements.

If the input data of a system with a rank de-
ficient matrix is given with errors, no increase
in the accuracy of the calculations and no
transformations will provide the guaranteed
accuracy of a normal pseudo-solution. This
requires additional information about the exact
task involved. But suppose that after the uni-
tary transformations, a system with small rows
or columns is obtained. Replacing these rows
and columns with zero values is equivalent to
a small perturbation of the initial system ma-
trix. If we can accurately find the normal
pseudo-solution of the resulting system, it will
mean that the projection of the normal pseudo-
solution of the exact system on one of the sub-
spaces drawn on singular vectors will be cal-
culated sufficiently accurately. There is no
reason to expect a better result without addi-
tional information.
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O BBIYHC/ICHUH NCEBA00OPATHONH MATPHLIbI
IKOHOMETPHYECKHX MojieJieil ¢ MaTpuuei
Ha0/II0leHAH HEMOJIHOT0 PaHTa

Buxmop Kymoeoii, Anexcanop Kymoeoti,
Onee [Llymogckuti

AnnoTtanus. PaccMoTpeH moaxoa oneHUBaHUS
MapaMeTpoB JIMHEHHBIX IKOHOMETPHUYECKHX 3aBH-
CUMOCTEH JUIsi Ciydasl COYETaHMsl psijia OCOOBIX
YCIIOBUH, BOSHUKAIOIINX B TMPOLECCE MOAEITHPOBA-
HUsl. DTH YCIIOBHSI KacaroTCsi HAnOoJiee BAXKHBIX
npo0JieM, BO3HUKAIOIINX HA NPAKTUKE MPH pean-
3alid psAa KIACCOB MaTeMaTHYeCKHX MOJENEH,
ULl TIOCTPOEHUSI KOTOPBIX HCIOIB3YETCs] MaTpUIia
OOBSICHSIFOIIIMX ~TEPEMEHHBIX. B OOJIBIIMHCTBE
CIIy4aeB BEKTOPBI, U3 KOTOPBIX COCTABIISETCS MaT-
pUIa, MMEIT TECHYI0 KOPPEISAIHOHHYIO CBSI3b.
UTo mpUBOAUT K HEOOXOAUMOCTH BBITIOTHSATH BBI-
YHCJIEHNS C HCIIOIb30BAHUEM MaTPHUIIBI HETIOJIHOTO
panra. Taxke MMEIOT MECTO HAPYIICHHS YCIIOBUS
Teopemsl ['aycca-MapkoBa. J[s1 10601 HEBBIPOIXK-

JICHHOM KBaJIpaTHON MaTpUIIbI X OJTHO3HAYHO

-1
OIpeacjicHa 06paTHa$1 Marpuna X TakKasi, 49TO

IIpH TIPOM3BOJIBHOM TIpaBoil wacti B pemrennem

_ _ oyl
CUCTEMBI Xp=B OyIeT BEKTOp p=X b. Ecmu

X BLIpOKICHHAsS MM NPSIMOYTO/bHAS MATPHIIA,
TOo 0OpaTHOH K Hell He cymiecTByeT. bonee Toro, B

ATHX CIIydasx cUcTeMa XB=B MOJKET OKa3aThCsi
HECOBMECTUMOMN. 3/I€Ch €CTECTBEHHO IOJIH30BATH-
csi 0000IIeHNeM TOHSTHSI 0OpaTHOTO TPeoOpas3o-
BaHUsI, KOTOpoe (HOPMYJIHPYETCs B TEPMHHAX CO-
OTBETCTBYIOIIEH 3a/laul MHHUMH3AINU CYMMBI
KBaJpaToB HEBSA30K. B 3TOM ke ciydae, umes: QR-
pa3IoKEHHe, MOXKHO HCIIOIB30BaTh  (HOPMYITY

X' = R_IQII. Kpome TOr0, MMEHHO OHa pEeKOMEH-
JyeTcsl JUIs KOHKPETHBIX BblumclieHuit. [lpu He-
MoJIHOM paHre Haubosiee yaoOHast Gopma mpe-
craBiennss X | BBITEKAeT W3 PATOKCHHS 110 Xa-
pakTepuctnyecknm uncnaM. Ecrm X =U 2V ¢
V' HeHyneBBIMH XapaKTEPUCTHYHBIMH YHCIIAMH,

to X* =V 2"U'. Hamu npeiaraercs anbTepHa-

THBHEIA c0co6 Beraucienns X, KOTOpHI OmH-
paercst Ha PA3MOKCHUH MATPUIBl X HEMOIHOTO
paHnra HA TPOU3BCACHUEC ABYX MATPUIl MOJHOTO
pasxra.

KiroueBble cj10Ba: SKOHOMETPHUECKAs MO-
Jelb, MaTpullda HENOJHOIO pAaHra, YCIOBUS
["aycca-MapkoBa, riceB1o00paTHasi MaTpHUIIA.
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