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ABSTRACT 
 

The method of the outcoming dynamics 
problems to solve an infinite system of integral 
equations Volterra of the second kind and the 
convergence of this solution are well studied. 
Such approach has been successfully used for 
cases of the investigation of problems of the 
impact a hard bodies and an elastic fine shells 
of the Kirchhoff–Love type on elastic a half-
space and a layer. In this paper an attempt is 
made to solve the plane and the axisymmetric 
problems of the impact of an elastic fine cylin-
dric and spheric shells of the S.P. Timoshenko 
type on an elastic half-space using the method 
of the outcoming dynamics problems to solve 
an infinite system of integral equations Volter-
ra of the second kind. The discretization using 
the Gregory methods for numerical integration 
and Adams for solving the Cauchy problem of 
the reduced infinite system of Volterra equa-
tions of the second kind results in a poorly 
defined system of linear algebraic equations: 
as the size of reduction increases the determi-
nant of such a system to aim at infinity. This 
technique does not allow to solve plane and 
axisymmetric problems of dynamics for fine 
shells of the S.P. Timoshenko type and elastic 
bodies. It is shown that this approach is not 
acceptable for investigated in this paper the 
plane and the axisymmetric problems. This 
shows the limitations of this approach and 
leads to the feasibility of developing other 
mathematical approaches and models. It 

should be noted that to calibrate the computa-
tional process of deformation in the elasto-
plastic formulation at the elastic stage, it is 
convenient and expedient to use the technique 
of the outcoming dynamics problems to solve 
an infinite system of integral equations Volter-
ra of the second kind. 

 
INTRODUCTION 

 
The approach [2–6] for solving problems of 

dynamics, developed [7–9, 11] by V.D. Ku-
benko, makes it possible to determine the 
stress-strain state of elastic half-space and a 
layer during penetration of absolutely rigid 
bodies [2, 3, 8, 9, 11] and the stress-strain state 
of elastic Kirchhoff–Love type fine shells and 
elastic half-spaces and layers at their collision 
[4−7]. This led to the feasibility of developing 
other mathematical approaches and models. In 
[10, 12–15], a new approach to solving the 
problems of impact and nonstationary interac-
tion in the elastoplastic mathematical formula-
tion [16–20] was developed. In non-stationary 
problems, the action of the striker is replaced 
by a distributed load in the contact area, which 
changes according to a linear law [21–23]. The 
contact area remains constant. The developed 
elastoplastic formulation makes it possible to 
solve impact problems when the dynamic 
change in the boundary of the contact area is 
considered and based on this the movement of 
the striker as a solid body with a change in the 
penetration speed is taken into account. Also, 
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such an elastoplastic formulation makes it pos-
sible to consider the hardening of the material 
in the process of nonstationary and impact 
interaction.  

The solution of problems for elastic shells 
[24–27], elastic half-space [28–30], elastic 
layer [31], elastic rod [32, 33] were developed 
using method of the influence functions [34]. 
In [24] the process of non-stationary interac-
tion of an elastic cylindrical shell with an elas-
tic half-space at the so-called "supersonic" 
stage of interaction is studied. It is character-
ized by an excess of the expansion rate areas 
of contact interaction speed of propagation 
tension-compression waves in elastic half-
space. The solution was developed using in-
fluence functions corresponding concentrated 
force or kinematic actions for an elastic iso-
tropic half-space which were found and inves-
tigated in [34]. 

In this paper, we investigate the approach 
[4–7] for solving the axisymmetric problem of 
the impact of a spherical fine shell of the S.P. 
Timoshenko type on an elastic half-space.  

It is shown that the approach [2–5], after 
the reduction of the infinite system of Volterra 
integral equations of the second kind [6 – 8, 
11] and discretization using the Gregory meth-
ods for numerical integration and Adams for 
solving the Cauchy problem, a poorly defined 
system of linear algebraic equations is ob-
tained for which the determinant of the matrix 
of coefficients increases indefinitely with in-
creasing size of reduction. 

 
PROBLEM FORMULATION 

 
A thin elastic cylindrical shell comes into 

collision with the elastic half-space 0z ≥  with 
its lateral surface along the generatrix of the 
cylinder at the moment of time 0t = . We as-
sociate with the shell, as can be seen in Figure 
1, a movable cylindrical coordinate system 
θr z′ : θ  – the polar angle, which is plotted 

from the positive direction of the oz axis, the 
oy axis coincides with the cylinder axis. Let us 
denote by 0( ,θ)u t , 0( ,θ)w t , ( ,θ)p t , ( ,θ)q t  

the tangential and normal displacements of the 
points of the middle surface of the shell and 
the radial and tangential components of the 
distributed external load, which acts on the 

shell. We associate a fixed Cartesian coordi-
nate system xyz with the half-space, so that the 
Oz axis is directed deep into the medium, the 
Ox axis is directed along the surface of the 
half-space, and the Oy axis is parallel to the 
generatrix of the cylinder. The shell thickness 
h is much less than the radius R of the middle 
surface of the shell (/ 0,05h R ≤ ). 

 
Fig. 1. Scheme of the system cylindrical 

shell – half space 
 

 
Fig. 2. Scheme of the system spherical shell 

– half space 
 
In case of axisymmetric problem, a thin 

elastic spherical shell, moving perpendicular to 
the surface of the elastic half-space 0z ≥ , 
reaches this surface at time t=0. We associate 
with the shell, as shown in Figure 2, a movable 
spherical coordinate system φ θr′ ′ , where φ′  – 
is the longitude of the radius vector r, θ  – is 
the polar angle.  

With the half-space we associate a fixed cy-
lindrical coordinate system φr z , the Oz axis is 
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directed deep into the medium, φ  – is the po-
lar angle. Angle θ  is plotted from the positive 
direction of the Oz axis. 

The cylindric or spheric shell penetrates in-
to the elastic medium at a speed 

( ) ,  (0 )Tv t t Т≤ ≤ , the initial penetration rate 

is 0 (0)TV v= , T – the time during which the 

shell interacts with the half-space. The shell 
thickness h is much less than the radius R of 
the middle surface of the shell (/ 0,05h R ≤ ). 

Let us denote by 0( ,θ)u t , 0( ,θ)w t , ( ,θ)p t , 

( ,θ)q t  the tangential and normal displace-
ments of the points of the middle surface of 
the shell and the radial and tangential compo-
nents of the distributed external load, which 
acts on the shell. With the half-space we asso-
ciate a fixed cylindrical coordinate system 
φr z , the Oz axis is directed deep into the me-

dium, φ – is the polar angle. Angle θ  is plot-
ted from the positive direction of the Oz axis. 
The physical properties of the half-space mate-
rial are characterized by elastic constants: vol-
umetric expansion module K, shear modulus 
μ  and density ρ . 

Let's introduce dimensionless variables: 
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u  – is the vector of 

movement of points of the environment; 

σ ,  σzz xz

rz

 – nonzero components of the stress 

tensor of the medium; M – is the shell running 
mass; ( )Tv t , ( )Tw t  – speed and movement of 

the shell as a solid. In what follows, we will 
use only dimensionless quantities, so we omit 
the dash. The elastic half-space and the spheric 
shell are in a state of axisymmetric defor-
mation. 

Differential equations (of the S.P. Timo-
shenko type) describing the dynamics of cy-
lindrical (2) and spherical (3) shells and con-
sidering the shear and inertia of rotation of the 
transverse section, due to (1), take the follow-
ing form [35, pp. 297, 307]: 
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here Ф – angle of rotation of the normal sec-

tion to the middle surface, 21b  – coefficient 

that considers the distribution of tangential 
forces in the transverse section of the cylindri-
cal shell, ks – shear ratio of the spherical shell, 

D – cylindrical stiffness, 0 0 0ν , ,ρE  – Poisson's 

ratio, Young's modulus and density of the shell 
material, p и q – respectively, the radial and 
tangential components of the distributed load 
acting on the shell, R − is the shell radius.  

The motion of an elastic medium is de-
scribed by scalar potential φ  and non-zero 
component of vector potential ψ , which satis-
fy the wave equations [2 − 5]: 
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The integrals were calculated using the 

method of mechanical quadratures, in particu-
lar, the symmetric Gregory quadrature formula 
for equidistant nodes. The Cauchy problem for 
the differential equation (52) was solved by 
the Adams method (closed-type formulas) [2 – 
6] of order 1m  with a local truncation error 

1 1( )mO t +∆  [7 – 9, 11]. As a result of discretiza-
tion, we obtain a system of linear algebraic 
equations (SLAE). Calculations have shown 
that with an increase in the reduction size N, 
the determinant of the SLAE matrix increases 
indefinitely. The SLAE is poorly defined: as 
the reduction size N tends to infinity, the value 
of the determinant of the SLAE matrix also 
tends to infinity. This is due to the fact that the 
kernels 11( , )Q n t , 22( , )Q n t  in (43), (44) have 

asymptotic exp( ( ))O n  in the parameter n, 

11( , )Q n t%  and 22( , )Q n t%  in (46) and (47) have 

asymptotic ( )1 exp( ( ))O O nn  in the parameter 

n. Methods of Tikhonov regularization and 
orthogonal polynomials do not work to neu-
tralize such an exponential singularity. The 
approach [1 – 5] for solving problems of dy-
namics, developed by V.D. Kubenko, makes it 
impossible to study the impact of elastic cylin-
dric and spheric shells of the S.P. Timoshenko 
type and elastic bodies on an elastic founda-
tion [7 – 9, 11]. In addition, this approach 
makes it possible to determine the stress-strain 
state only on the surface of the medium into 
which the striker penetrates. 

 
CONCLUSIONS 

 
As a result of an attempt to solve the plane 

and the axisymmetric problems of the impact 
of a cylindric and a spheric fine shells of the 
S.P. Timoshenko type on the surface of an 
elastic half-space, applying the method of 
V.D. Kubenko, the limitations of this tech-
nique were revealed. This technique does not 
allow solving plane and axisymmetric [1] 
problems of dynamics for refined shells of the 
S.P. Timoshenko type and elastic bodies. 

To solve [10, 12–15] the problems of im-
pact and nonstationary interaction [16–20], the 
elastoplastic formulation [21–23] can be used. 
It should be noted that to calibrate the compu-
tational [2] process in the elastoplastic formu-
lation at the elastic stage, it is convenient and 
expedient to use the technique [2–6] for solv-
ing the problems of dynamics, developed by 
V.D. Kubenko [7–9, 11]. 
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