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Abstract. Refined model of S.P. Timoshenko
makes it possible to consider the shear and the
inertia rotation of the transverse section of the
shell. Disturbances spread in the shells of S.P.
Timoshenko type with finite speed. Therefore, to
study the dynamics of propagation of wave
processes in the fine shells of S.P. Timoshenko
type is an important aspect as well as it is
important to investigate a wave processes of the
impact, shock in elastic foundation in which a
striker is penetrating. The method of the outcoming
dynamics problems to solve an infinite system of
integral equations Volterra of the second kind and
the convergence of this solution are well studied.
Such approach has been successfully used for
cases of the investigation of problems of the
impact a hard bodies and an elastic fine shells of
the Kirchhoff-Love type on elastic a half-space and
a layer. In this paper an attempt is made to solve
the axisymmetric problem of the impact of an
elastic fine spheric shell of the S.P. Timoshenko
type on an elastic half-space using the method of
the outcoming dynamics problems to solve an
infinite system of integral equations Volterra of the
second kind. It is shown that this approach is not
acceptable for investigated in this paper
axisymmetric problem. The discretization using the
Gregory methods for numerical integration and
Adams for solving the Cauchy problem of the
reduced infinite system of Volterra equations of the
second kind results in a poorly defined system of
linear algebraic equations: as the size of reduction
increases the determinant of such a system to aim
at infinity. This technique does not allow to solve
plane and axisymmetric problems of dynamics for
fine shells of the S.P. Timoshenko type and elastic
bodies. This shows the limitations of this approach
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and leads to the feasibility of developing other
mathematical approaches and models. It should be
noted that to calibrate the computational process in
the elastoplastic formulation at the elastic stage, it
is convenient and expedient to use the technique of
the outcoming dynamics problems to solve an
infinite system of integral equations Volterra of the
second kind.

Keywords: impact, elastic, elastic-plastic, half-
space, axisymmetric problem, fine, spherical shell,
S.P. Timoshenko.

INTRODUCTION

The approach [1 — 5] for solving problems of
dynamics, developed in [6 — 8, 10], makes it
possible to determine the stress-strain state of
elastic half-space and a layer during penetra-
tion of absolutely rigid bodies [1, 2, 7, 8, 10]
and the stress-strain state of elastic Kirchhoff—
Love type fine shells and elastic half-spaces
and layers at their collision [3 — 6]. This led to
the feasibility of developing other mathemati-
cal approaches and models. In [9, 11 — 14], a
new approach to solving the problems of im-
pact and nonstationary interaction in the elas-
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toplastic mathematical formulation [15 — 19]
was developed. In non-stationary problems,
the action of the striker is replaced by a dis-
tributed load in the contact area, which chang-
es according to a linear law [20 — 22]. The
contact area remains constant. The developed
elastoplastic formulation makes it possible to
solve impact problems when the dynamic
change in the boundary of the contact area is
considered and based on this the movement of
the striker as a solid body with a change in the
penetration speed is taken into account. Also,
such an elastoplastic formulation makes it pos-
sible to consider the hardening of the material
in the process of nonstationary and impact in-
teraction.

The solution of problems for elastic shells
[23 — 26], elastic half-space [27 — 29], elastic
layer [30], elastic rod [31, 32] were developed
using method of the influence functions [33].
In [23] the process of non-stationary interac-
tion of an elastic cylindrical shell with an elas-
tic half-space at the so-called "supersonic”
stage of interaction is studied. It is character-
ized by an excess of the expansion rate areas
of contact interaction speed of propagation
tension-compression waves in elastic half-
space. The solution was developed using in-
fluence functions corresponding concentrated
force or kinematic actions for an elastic iso-
tropic half-space which were found and inves-
tigated in [33].

In this paper, we investigate the approach
[3 — 6] for solving the axisymmetric problem
of the impact of a spherical fine shell of the
S.P. Timoshenko type on an elastic half-space.

It is shown that the approach [1 — 4], after
the reduction of the infinite system of Volterra
integral equations of the second kind [5 — 7,
10] and discretization using the Gregory meth-
ods for numerical integration and Adams for
solving the Cauchy problem, a poorly defined
system of linear algebraic equations is ob-
tained for which the determinant of the matrix
of coefficients increases indefinitely with in-
creasing size of reduction.

PROBLEM FORMULATION
A thin elastic spherical shell, moving

perpendicular to the surface of the elastic half-
space z >0, reaches this surface at time t=0.
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We associate with the shell, as shown in Fig. 1,
a movable spherical coordinate system r'gp6,

where ¢ — is the longitude of the radius

vector r, 6 — is the polar angle. The shell
penetrates into the elastic medium at a speed

Vi (t), (0<t<T), the initial penetration rate
is V, =v;(0), T — the time during which the
shell interacts with the half-space. The shell

thickness h is much less than the radius R of
the middle surface of the shell (h/R <0,05).
Let us denote by uq(t,0), wy(t,0), p(t,0),
q(t,0) the tangential and  normal
displacements of the points of the middle
surface of the shell and the radial and
tangential components of the distributed
external load, which acts on the shell. With the
half-space we associate a fixed cylindrical
coordinate system roz , the Oz axis is directed
deep into the medium, ¢ — is the polar angle.
Angle 6 is plotted from the positive direction
of the Oz axis. The physical properties of the
half-space material are characterized by elastic
constants: volumetric expansion module K,
shear modulus p and density p. An elastic
medium with constants K, u, p will be

associated with a hypothetical acoustic
medium with the same constants K, p,

wherein u=0. Under C, C;, C, we mean

the speed of longitudinal and transverse waves
in an elastic half-space and the speed of sound
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Fig. 1. Scheme of the system spherical shell —
half space

in the considered hypothetical acoustic

medium.
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Let's introduce dimensionless variables:

r Ct o, r 12 ,
t - T - z = u| —
R R R R
R R ' K
! VT ! WT ! p
V. =, W. =—, = ,
¢, ' R P = KR
!/ q !’ M
=—— M=—. (ij=r,0,2
4= R (j=r.9,2)
pr=Cs 1 az_&:(lﬁ_uj
c. K’ C? 3K )
c2_ K bZ_E 3u
p’ a? 3K +4p
where u=(u,,u,u,) — is the vector of
movement of points of the environment;
c,, 6, — honzero components of the stress

tensor of the medium; M — is the shell running
mass; vy (t), wr (t) — speed and movement of

the shell as a solid. In what follows, we will
use only dimensionless quantities, so we omit
the dash. The elastic half-space and the spheric
shell are in a state of axisymmetric
deformation.

Differential equations (of the S.P.
Timoshenko type) describing the dynamics of
spherical shells and considering the shear and
inertia of rotation of the transverse section, due
to (1), take the following form [34, pp. 297,
307]:

1 o, ctgo Oy | 201+ Vo)k, +1-v, OWy
1-vi 80> 1-v} 00 2(1-v2)k, 00

Vo +(1-vy)cos’ 0 () 2 o,

+ )
A—v3)sin?0  ° 2(1+vyk, ° ot 4
1 w1 Ay ctgh  owy

20+ vk, 0> 1-v, 80 2(1+v,)k, 00
1 od ctgb 2
U, — W, +
T2k, 90 1-v, ° 1-v,

2

ctgo O zawo_p’ 2)

2tV k. 0ot
2 2
a—Cf+ctg()6£)— ER_ W, _
a9 50 2(1+vy)k,D 00
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_ (1-vy)k,D(2v, +(1-v,)sin 20) + E, hR?sin 9
2(1+v,)k,Dsin’ 0

, 0°D

B

where

2 _PkiCs 2 poh®Cok, K =1 h?

0T > T p 0 AT R
0

2 3

k =1+ = 3h 2! D:iZ’ ks=§1

20R 12(1-v2) 6

where @ — angle of rotation of the normal
section to the middle surface, kg — shear ratio,
D — cylindrical stiffness, v,,E,,p, — Poisson's
ratio, Young's modulus and density of the shell
material, p u q — respectively, the radial and
tangential components of the distributed load
acting on the shell, R — is the shell radius.

The motion of an elastic medium is
described by scalar potential ¢ and non-zero
component of vector potential v, which
satisfy the wave equations [1 — 4]:

(3)
° o &

.
or® ror 0z°

Physical quantities are expressed in terms
of wave potentials as follows [5 — 8]:

o202 30 v v
or oz oz or r
020
Uy =0, 0y =(1-209) "7 +
at® 4)
o[ %0, O ow |
+2[3 —+ +—
oz 0Oroz  roz
Oryp =0¢z =0,
2 2 2
Grz—zf’zaq) oy ZBZG\V’
oroz 2 072
2 2
—(1- 2b2)a(P+2B a‘P v
ot? or2  orez
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If the shear modulus p is set equal to zero
u=0, then the equations of motion of the

elastic medium will be the equations of
acoustics.

Let us consider the initial stage of the
process of impact of elastic shells on the
surface of an elastic half-space [3 — 6], when
no plastic deformations occur and the depth of
the shell penetration into the medium is small.

The problem of interaction of elastic shells
with an elastic half-space is solved in a linear
formulation, therefore, we linearize the
boundary conditions [1, 2, 7, 8, 10]: we
transfer the boundary conditions from the
perturbed surface to the undisturbed surface of
the bodies that are deformed. We assume that
there is no friction between the elastic half-
space and the penetrating body, or the slippage
condition is valid.

As can be seen from Fig. 1, the projections
of the functions ug, wy, p and g on the or and

oz axes will be equal:

pr,.W, (t,0) = w,(t,0) cos6,
pr,.u, (t,0) =u,(t,0)sin0,
pr,. p(t, 6) = p(t,0)coso,
pr2q(t,0) = q(t,6)sin®,
pr.w, (t,0) = -w,(t,0)sin0,
pr.u,(t,0) =u,(t,0)cos,
pr. p(t,06) =—p(t,0)sin6,
pr.q(t,0) =q(t,0)cosH.

Then, in the zor coordinate system, the
displacements u,, u, and stresses c,, and c,,

at the surface points of the contact area will be
written as:

u,(t,r,0) =w; (t)— f(r) —w,(t,6)cosb—
—U,(t,0)sin6,

u, (t,r,0) = —-w,(t,0)sin6 +

+U,(t,0) cos6,
c,,(t,r,0)=—p(t,0)cosO—
—q(t,0)sin0,

o, (t,r,0)=—p(t,0)sin0 +
+q(t,0)cosb,

p(t,0) =—0,,(t,r,0)cos6—c,,(t,r,0)sin0,

()

0]<67,
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q(t,0)=—0,,(t,r,0)sin0+c,,(t,r,0)cosO,

0/<6’,

where w; (t) — displacement of the shell as a
rigid body, the function f(x) describes the shell

profile, 26" as can be seen from Figure 1, the
size of the shell sector in contact with the half-
space. In the case of a spherical shell:

f(r)=1-1-r?,

The kinematic condition that determines the
half-size of the contact area x (t) is written as
follows:

W, (t)— f(r)—u,(t,r,0) —w,(t,0)cos0—
0, if r<ri(t),
£<0, if r>r'(t),

—U, (t,0)sin6 = {

We assume that the contact area is simply
connected region, and this statement is
equivalent to the fact that the stresses normal
to the contact area are compressive:

Oyl o <0, T<I(1).

zz|

Based on (4), the boundary conditions in
the absence of friction in the contact zone can
be formulated as follows:

ou, oW, (t,0)

=V () =v()- cos0 —
|  SVEn=wO-—5
ot
Gzz|2=0:0; I’>r*(t), Gzr|z=o:()7 r>0.

The initial conditions for potentials and —
are zero:

_o%

oho=5 S B

=O’ \I’|t:0 ot o

For the problem of impact of an elastic
shell on an elastic half-space, the velocity and
displacement of the impacting body are found
from the equation of motion by integrating it.
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The equation of motion of a shell of mass
M for the problem of impact with an initial
velocity V, has the form:

M dz(‘;‘;g(t) ——P(t), (10)

Ve ()], =Vo, W ()], =0, (11)
r ()

P(t)=—-2n | ro,(t,r,0)dr. (12)

0

The condition for the absence of
disturbances ahead of the front of longitudinal
waves and the condition for damping of
disturbances at infinity are valid.

=0, (13)

(p|p1>(xt+cq - 0’ v p>at+C,

(p|p1_m —0, \|/|pl_m —0, (14)
2 2

where p, =r°+2z°, C, =const.

SOLUTION ALGORITHM

Since the impact process is short-term, the
perturbation region at each moment of time t is
finite. Restricting ourselves to a finite interval

of interaction time (0<t<T), it is possible to

select a region of a half-space, which by the
time moment T covers the entire zone of
disturbances. From this point of view, for

times (0<t<T), the elastic half-space can be

replaced by an elastic half-cylinder
(r<I; z>0), the boundaries of which do not

reach the perturbations by the time T.
| =aT +r"(T).

Thus, for times (0<t<T), the considered

problem is reduced to a nonstationary problem
for a half-cylinder with mixed boundary
conditions at its end. To represent the
displacement vector as:

u=grade+roty, divy =0,
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on the lateral surface of the half-cylinder, we
select, for example, the conditions for sliding
termination:

Ul =0, o,|_ =0 (15)
or

ul_, =0 o, =0. (16)

Consider the initial - boundary value

problem (2), (3), (8) — (11). Let us represent
the normal w;,(t,6) and tangential u,(t,0)
displacements of the points of the middle
surface of the shell and the radial p(t,0) and
tangential  q(t,0) components of the

distributed external load acting on the shell in
the form of series in Legendre polynomials
and their derivatives.

Wy (£,0) = 3 W, (1P, cos ), )
Uy (£,0)= >y, (OP(cos0), (18)

p(t0)=3 p,OPcos),  (19)
qt.0)= > q,(OP'(cos), (20

O(t,0) = i(bn (t)P(cos0). (21)

n=1

In the space of Laplace transformants with
parameter s, the transformants of functions

d, w, , U, , p,q will, due to (17) — (21), have
the form:

W5 (5,0) = 3wk, (9)P, (cos ), 22)
Uy (s,0) = iugn (s)P(cos0), (23)
pH(s.0)= > ()P, (cos). (24)
q-(s.0) = 3 g (s)P(cos), (25)
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@' (s,0) = idbh(s)Pnl(cos 0), (26)

We apply to the system of equations (2) the
Laplace transform in the variable t with the
parameter s and substitute their equalities (22)
— (26). Equating the coefficients at the same
P(cosf) and P'(cosf) we obtain the

relations connecting the components of the

expansion  into  series of  functions
@, wy, us ,p-and g-.

L

S
Wy (5) = <5y P2 27)

v +2/(1-v,)’

W5 (5) = Qi (N, 8) Py () + Qi (. )0l (5),
(28)

ug(s) = Q5 (N, ) p(s) + Q5 (,5)as (3),
(29)

@, (s) = Q5 (n,8) py (5) + Qg (N, 8)gy (5),
(30)
where

Qilj_ (n,s)= A j &)

Al(s)

, (i=1,2,3;j=1,2; n=1,),

nn+l) 1
1-vZ  1-v,

Ay (n,s) :( +y§szjx

x(n(n+1)—1+vo+RR+n§sz),

Ay (n,s) :(RR+[M+1](n(n+l)—
Vo

—1+vy +Ry)+m5s?) /(21 +v,) DK, ),

A, () = n(n+1)

(N(N+1) =1+ vy + R, +m3s7),

0
_n(n+DRg N n(n+1)
21+ vk ( 2(1+vy)k,

Ay,(n,s) =

+

0

+y§szJ(n(n +1) =1+, + Ry +155%),
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ASl(n,s):&(—n(n+1)+ 1 +y§szj,
h 1+v,
R2E h
Asz(nis):_w’ . e ,
(L-vyh 2(1+v,)Dk,

AS) =—nvs (s°+As* +B,s* +C,),

n(n+1) N 1
2(1+vy)K

~ 1({n(n+)
Aaz_z( 2 T
Yol 1=vg 1+v,

2
+ 2 +i2 n(n+1)—1+v0+R—th ,
1-v, ) W 2(1+v,) Dk,

E?b:i[né n(n+y) 1 j( n(n +1)

1-v2  1+vy L 21+ vk,

N 2 j+y2(n(n+l)+ n(n+1) N 1
1-v,

L 1=V 20+vpk, 1+v,

+

2
n(n+1)—1+v,+ RTEoh + 2 |-
1-v, 2(1+vy)K,

_ n(n+Y) n
2(1+v,)Dk, | (1-v,)?

N YeR?*E,h
2(1+v,)Dk, ) )’
= 1 n(n+1) 1 n(n+1)
C = 2.4 2 +
MoYo L 1=vg 1+, 2(1+ v,k

2
n(n+1)-1+v, +R—th -
2(1+v,) DK

1-v,

(20 +vg)k, +1-vy)+

+

1-v,
_n(n+)R*E,h n(n+1)
4(1+v,)°DKZ ) 2(1-v2)k,

2
[ REN (20rvk )
2(1+v,)Dk, 1-v,

x(n(n +1)-1+v, +ﬂDJ
2(1+v,) DK,

Then applying the inverse Laplace
transform to (27) — (30), by the theorem on the

Transfer of Innovative Technologies
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convolution of the originals of two functions, ) ,(nn+1) 1
we have: I,y ="M5Y00: +| Mo 1-—v2  1—v +
0 0
1t 1 +75(N(N+1)=1+v, +Ry) o,
Wi o (1) =—2J' P, (T)COS(—}CIT, (31)
TO 0 Yoy(1=v,) /2 R, = n1(i+1) (N(N+21) =1+ v, + R, +1?r),
0
WO,n (t) :J. pn (T)Qll(nat_r)dr'i' n(n +1)
0 I =ﬂ§—0a
. (32) ]_—VO
+[ a4, (DQ, (n,t—1)dr, 1 2(L+ vy )k,
0 R, = +1 |x
. 2(1+v,)Dk, I-v,
Uy n (1) :J. P (DQu(n,t—1)dT + x(n(N+1)—1+v, + Ry +m’r)— RR),
t 0 (33) 1 1
+£qn(r)sz(n,t —1)dt, L, =no (1_\/0 + 2(1+ vk, j(”
) t n(n+1 2
®, () = [ p,(DQy (Nt -1yt + Rzz=n§v§rl+£n§(2(l(+v ))k I j+
0 0/"s 0
(34)
t . 2 _
+an (0Q, (0.t - 1)d, (0 =1,00), +vo(N(N+1) 1+V0+RR))r+
’ +(2r1(n+1)k +1 2 j(n(n+1)—1+v0+RR)—
where Avolks  1=v,
Q;(n,t)= 4[(ArRij + Ayl )eh(nt) cos(o,t) + _n((n+—1)F:<R’
2(1+v,)K,
AR —A_L)sh(rt)sin(o,t) | /(A2 +A? )+
+( i ru) (0) (GO)]/( r |) L 226+ 5 n(n+1) . 2 .
28, (057) (H(SD)eh(sh) + H(-s)cos(s) 2 =ToYe%H| M| 50k 1Ty,
A'(s}) ’ 2
+y-(n(n+1)-1+v,+R.)])o,
where H(x) — Heaviside function, T((+D ’ R))
R = (r* +0°)" cos(p/2), Ry, :&(—n(n+1)+ ! +y§rj,
6y = (2 +62)* sin(p/2), ¢=arctg(c/r), h 1=vo
_ R R
r=—((A+B)/2+A /3), c=-3(A-B)/2, |31=y§fc, Ry, === tn(n+1), I, =0,
ss=A+B-A /3, A=(-q'/2+Q"*)",
B:(—(l'lz—Q”j)”:‘, Q:_(p’/3)3+(q’/2)2, A’(s)z—n§y§[6s4+4ﬂasz+2I§b],
q'=2(A,/3)°-AB,/3+C,, Arz—n(z)ygli6r1+4ﬂar+2|§b],

r_ A2 R =r¢_-g*2 = A
p'=-A/3+B,, L=r"-0", 0, =2ro, A =-ngvs[ 60, +4Ac .

1 | -1
oo [ ofnen 1 W, o (1) == [ p, (t)sin| — " lde
Rﬂ‘%%“(“{l_yg -, ) vI Yo 1= v,) /2

+ye(N(N+1)—1+vy+ RR)) r+ W, , (1) =j[ p, (1)Q,(n,t —t)dt+
+(n(n+21)_ ! J(n(n +1)-1+v,+Ry), t ~ (39)
1-v2  1-v, +[a,(mQ,(nt-1)dk,
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uO,n (t) = j. pn (T)Q~21(nat - T)dT + (36)
+j q, (T)sz (n,t—1)dr,
D (t)= j P, (I)Qsl(n,t —1)dt+

+J. qn (T)Q32 (n,t - ’L')dT, (n = L_OO),

where

Qij (n,t) = 4[(5rRij + 8i Iij

+(3,Ry =8, I )eh(rh)sin(ogt) | /(87 +87 )+
24 (0, s7)(H(s!)sh(s,t) + H(=s/)sin(s;t))

+

(5A°(s0))

)sh(ryt) cos(o,t) +

O, =LA, —G,A;, 8, =C,A, +IA,.

We apply to the system of equations (2) the
Laplace transform in the variable t (s is the
transformation parameter) and the Fourier
method of separation of variables, considering
the evenness in x of the potential and the
oddness of the potential , and require the
satisfaction of condition (13) — (14). Then, in
the space of Laplace transformants, we obtain
the following representations for wave
potentials [5]:

(PL(S> r, Z) = i An(S)eXPL—Zw’S—z'F)ﬁ ]‘]O(an)a
n=0 a
\VL(S') r, Z) = i Bn (S) eXp[_21,3_2+ }’ﬁ ]Jl(}‘nr)a

(37)
where A, — the eigenvalues of the problem,

which are determined from conditions (15)
taking into account (4) and are the roots of the
equality

J(A,D=0, (n=0,0).

In (37) A,(s) and B,(s) are determined

from the boundary conditions. It follows from
representations (37) and relations (4) that the
sought-for functions on the surface of a half-

84

space are represented as series in the system of
eigenfunctions of the problem.

0, (t1,0) =, (03,01,
0, (t1,0) = U, (©3,(1).
6, (t.1.0) = 6, OIo01).

c,(t,x,0)= iczm ®JI, A, r).

Just as in [1 — 5], the dependence between
the harmonics of the vertical component of the
velocity and normal stresses on the surface of
the half-space is determined [6 — 8, 10]:

o, ()= —({Vn t)+ jvn (D)F(t— r)dt],

(38)

where

F (t) =—a) J, (o) t)+2bBA, {Bzxﬁtz(jo(axnt)—
—Jo(BAD) — I (e )+ I (BA,D) +BA, tx

x(bJ 4 (0, 1) — Jo (BA,1) +(2—b*) Ty (0, t) —

— Jo(BrD},

where J,(t), J,(t) — Bessel functions of the

first kind of zero and first order, respectively,
and the function J,(t) is defined as follows:

J (1) = .t[ J,(7)dr.

Further, we will satisfy the mixed boundary
conditions (8). From (8), (38) we obtain the
following representation for the vertical
component of the velocity on the surface of the
half-space:

ivn ®)J, (A, r)=H(r —r)x
{VT (t) — Vi, (t,0)cos O — U, (t,0)sin 6} - (39)

SH(r-r)Y Jo(xnr)jvn (DF. (t—1)de.

Transfer of Innovative Technologies
Vol.4, No.2 (2021), 77-89



Information Technology

Substituting (22) and (23) into (39) with
allowance for r=sinO, arising from
geometric considerations in the zone of the
contact region, and representing both parts of
(39) in the form of series in J,(A,r), we
obtain an infinite system of Volterra integral
equations (ISVIE) of the second kind
regarding to unknown harmonics velocity on

the surface of the half-space (n=0,0):

V(1) + Z ol (r*)jvm (1)F, (t—1)dt +
3 [ Wiy (1) + 021 Yl ()]
th- (D)F, (t—1)dt =C_(r*)v; (1),

where

n

al(r’ )_—er (AN I (1,1,

0@ (r')= - v jr\h—rzpm(\l'l—rz)Jo(knr)dr»

o (r*) = le jerl_z op (W)Jo(xnr)dr,
no

C,(r) :%jr\lo(xnr)dr, N? = [r(Jo(,n) dr

n o 0

The functions Vi, (t), Uy, (t) and @, (t) are
determined from relations (31) — (34), but they
involve unknown functions p,(t) and q,(t).

Let us deal with their exclusion, for this we
use conditions (6), (7), which can be rewritten
using (38) in the form:

s

pn (t)P,(cosB) = aHO" — |9|) cos 0 x

3

X
M8°

J o\, sm@)[V (t)+JV (0)F (t- T)d‘[j

q, ()P (sin0) = a H(0"

M8:

— |6|) sin O x

T
o
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<3 3,00, sine)(Vn )+ [V,(0F, ¢ —r)dr}

Using the orthogonality of the polynomials
and the associated Legendre polynomials, we
obtain  the relations establishing the
relationship between the harmonics of the
series expansions of the functions p, g and V:

P, (1) = Zv“)(e*)[vm(t)+jvm<r)Fm(t—r)dr},
q,(t) = &(“)(e*)[vm(t)+jvm<r>Fm(t—r)drj,

where

.
v ©07) = izjcosesinepn (cos0)J, (1, sin 0)do,
n 0

Y0 (07) = — | sin® 0P} (cos0)J, (A, sin 0)do,

3 r\)
Sy —)

:jfsine(Pn(cosO))z do
0

N2 :jfsine(Pnl(cose))z do
0

Thus, the final form of the resolving ISVIE
of the second kind will be as follows:

V(1) + Za(4)(r*)jvm (0)F, (t—1)dt+
+Za‘5><r >§ j Y (D) (Vi (1) +
+ j Vi ®F —i)diJQn(m,t —T)dt+
+Za“”)(r*)kzlivﬁﬁz(e*a))(vk(r)+

' I v, (©) Fk(r—@daJle(m,t 7t

DY FHIALE

k=0 o
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+ij ©F (t —é)déJQm(mat —T)dr+

+Za“”(r )kZ; j Y907 (1) (Vi (1) + )

v, (&)Fk(r—é)diJsz(m,t—r)dr=
=C, (v (), (n=0,%).

To solve the problem, when the shell
penetration velocity v, (t) is a predetermined

function, it is sufficient to numerically
implement equations (40).

The expression for the reaction force of the
elastic half-space (12), using (38), can be
rewritten as:

()

P(t)=-2n |

0

re,, (t,r,0)dr =omr (t)x

n

X{VT )+ 22 % (i”r* ) jvn (0)F, (t —r)dr}

The equation of motion of the shell (10)
with the initial conditions takes the form:

m 3 ® —anr” (t){v; (O (t)+
(41)

+2Z ( ) jv (D)F, (t— r)dr}

To solve the problem of impact with an
initial velocity V,, the system of equations
(40) must be supplemented with the equation
of motion (41).

The contact area is determined considering
the rise of the medium from the condition:

t
éSljth+82jjvT (v)dt—f(r’)—
’ (42)

>3, (xnr*)jvn (t)dt—
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—mipn(m)x

n=0

X I[yfﬁ (arcsin r*(r))Qll(n,t —1)+

00

vﬁnz (aresin 1" (1))Qpy (,t =) |x
x[vm (r)+£vm<&> Fm(r—@da)dr—
—r*mg Pnl(\/l—7)x

) j 1 rcsint* (©)Qu(n,t-0)+
+v” (aresin* (1)Qy, (n,t ~ ) |

x[vm(r>+fvm@Fm(r—a)da]dr=

j— O’

£<0,
where &,={0, if i=j; 1, if i=j} -
Kronecker symbol. Index j=1 corresponds to
the case when the body penetrates into the
medium at a speed varying according to a
predetermined law (setting 1); if the velocity
of the penetrating body is known only at the
initial moment of time t=0, and at
subsequent moments is determined from the
equation of motion (statement 2), then j=2. If
we exclude the fourth term in relation (42),
then we obtain a condition from which the

boundary of the contact region is determined
without considering the rise of the medium.

if r<ri(t)
if r>rit)

NUMERICAL SOLUTION

The size of reduction N of the ISVIE of the
second kind will be chosen from
considerations of practical convergence.

The integrals were calculated using the
method of mechanical quadratures, in particu-
lar, the symmetric Gregory quadrature formula
for equidistant nodes. The Cauchy problem for
the differential equation (41) was solved by the
Adams method (closed-type formulas) [1 — 5]
of order m, with a local truncation error
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o(At™™") [6 — 8, 10]. As a result of

discretization, we obtain a system of linear
algebraic equations (SLAE). Calculations have
shown that with an increase in the reduction
size N, the determinant of the SLAE matrix
increases indefinitely. The SLAE is poorly
defined: as the reduction size N tends to
infinity, the value of the determinant of the
SLAE matrix also tends to infinity. This is due

to the fact that the kernels Q,(n,t), Q,(n,t)
in (32), (33) have asymptotic exp(O(n)) in the
parameter n, Q,,(n,t) and Q,,(n,t) in (35) and
(36) have asymptotic O(%)exp(O(n)) in the

parameter n. Methods of Tikhonov
regularization and orthogonal polynomials do
not work to neutralize such an exponential
singularity. The approach [1 — 5] for solving
problems of dynamics makes it impossible to
study the impact of elastic shells of the S.P.
Timoshenko type and elastic bodies on an
elastic foundation [6 — 8, 10]. In addition, this
approach makes it possible to determine the
stress-strain state only on the surface of the
medium into which the striker penetrates.

CONCLUSIONS

As a result of an attempt to solve the
axisymmetric problem of the impact of a
spherical fine shell of the S.P. Timoshenko
type on the surface of an elastic half-space,
applying the method of reduction of dynamic
problems to infinite systems of \oltaire's
equations of the second kind, the limitations of
this technique were revealed. This technique
does not allow solving plane and axisymmetric
problems of dynamics for refined shells of the
S.P. Timoshenko type and elastic bodies.

To solve [9, 11 — 14] the problems of
impact and nonstationary interaction [15 — 19],
the elastoplastic formulation [20 — 22] can be
used. It should be noted that to calibrate the
computational [1] process in the elastoplastic
formulation at the elastic stage, it is convenient
and expedient to use the technique [1 — 5] for
solving the problems of dynamics, developed
in [6 -8, 10].
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OpuH noaxon K ocecMMMETPUYHOM 3a1aue
yaapa o6osnouek Tuna C. I1. Tumomenko
00 ynpyroe nojaynpocTpaHcTBO

Braoucnas Bocoanos

AnHoTanmus. YtouHeHHas wmonens  C.IL
TuMOIIEHKO TMO3BONSIET YYECTh BpalleHHE U
HMHEPLHIO TAKOTO BPAIECHHs IONIEPEYHOTO CEYECHUS
obosouku. Bo3mymieHust pacnpocTpaHsSIOTCS B
obonoukax Tumna C.II. TUMOIIEHKO ¢ KOHEYHOU
ckopocTero. IloaToMy  uW3yueHWEe  ITUHAMHUKHU
pPacIpoCTpaHEHHs BOJIHOBBIX MPOLIECCOB B TOHKMX
obonoukax tuma C.JI. TuMomeHKO SBIsETCS
BaXXHBIM  aCIIEKTOM, TaK »JK€ KaK BaXHO
HCCIIEJIOBAaHNE BOJHOBBIX IIPOLIECCOB yaapa B
yOpyroM OCHOBaHWH, B KOTOpPO€ TPOHHKAET
yIapHUK. XOpOIIO M3y4YE€Hbl METOJl CBEACHUSA
pemieHnuss  3ajad  AMHAMUKA K PEIICHUI0
0ECKOHEYHOW CHCTEMBI WHTETPAbHBIX YpaBHEHUI
Bonbreppa BTOpOro poma M CXOJUMOCTH 3TOTO
peuieHus. Takoil moaxon yCHENIHO HPUMEHSIICS
Uil Ccly4yaeB HCCIENOBaHMS 3amad o0 yaape
TBEPABIX TEI M YNPYTHX TOHKUX OOOJIOYEK THIIA
Kupxroda — JIsBa 00 ynpyroe moaynpocTpaHCTBO
u cnoii. B pgamHON paboTe cnaenaHa IOMBITKA
pelieHrsT OCeCMMMETPHYHOHM 3amaun o0 ymape
yOpyroil TOHKOH cdepudeckoii OOONOUKM THIA
C.II. TumomieHko 00 ympyroe MOIYMPOCTPAHCTBO
METOAOM CBEJEHU 3a/1a4 AUHAMUKH K PEILICHUIO
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0ECKOHEUHOW CHUCTEMBI MHTETPAIbHBIX ypaBHEHUH
Bonbreppa BrOporo poma. Ilokazano, 4To Takoit
MOAXOJ, HEMpUEMIIEM U UCCIEAYyEeMON B AHHOM
CTaTb€ OCECUMMETPUYHOM 3a1aun. J(uckpernsanus
C HUCIOJB30BaHHEM METONOB Iperopu s
YHCJICHHOTO HHTEIPUPOBaHUS M Apjamca ams
pemienns 3azaun  Komm g mosydeHHOM
OeckoHEUHOH cHcTeMbl YypaBHeHHH Bombreppa
BTOPOIO pOZA MPHUBOIUT K PELICHHUIO IUIOXO
OIpeIeICHHOM CHUCTEMBI JIMHEMHBIX
anreOpanveckux YpaBHEHW: TPH YBEIWYCHUH
MOPSIAKA PEAYKLUH ONpPENeINTENb TAKOH CHCTEMBbI
CTPEeMHTBCSI K OSCKOHEYHOCTH. JlaHHas MeTommka
HE M103BOJISIET peraThb TJIOCKHE u
OCECUMMETPUYHBIE 33/1a4ul AUHAMUKH JJI1 TOHKHUX
obomouek Tuma C. I1. TumomeHko U ynpyrux Tel.
DTO MOKAa3bIBAET OrpaHUYCHHA TAKOr'o mnmoaxoaa n
OOBACHSICT HEOOXOOUMOCTh pa3padOTKH JPYTuX
MaTeMaTHYECKUX MOAXonoB U mopenei. Cremyet
OTMETHUTh, YTO JUIS KaTMOPOBKU BBIYUCIUTEIHHOTO
mpolecca B YNPYrolaCTUUeCKOW MMOCTaHOBKE Ha
YOpyro craguu ymoOHO U Ieliecoo0pa3Ho
HCHOJIb30BaTh TEXHUKY CBEACHUS 3a1ad JUHAMHUKHI
IS perieHus OeckoHeuHOH CUCTEMBI
UHTErpajibHbIX ypaBHeHUN Bombsreppa BTOpOro
poxna.

KuroueBble cjioBa: ynap, YHOpyrocTtb, yIpy-
TOIUIACTUYHOCTh, MOJYMPOCTPAHCTBO, OCECHM-
MeTpu4Hasi 3ajada, TOHKas cdepudeckas 000-
nmouka, C.I1. Tumomenko.
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