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Abstract. Composite materials are widely used
in industry and everyday life. Many different meth-
ods are used to calculate and develop composite ma-
terials. Many methods of calculation and design of
such materials are successfully used. In this article,
for the design of composite and reinforced materi-
als, a technique for solving dynamic contact prob-
lems in more precise an elastic-plastic mathematical
formulation is used. To consider the physical non-
linearity of the deformation process, the method of
successive approximations is used, which makes it
possible to reduce the nonlinear problem to a solu-
tion of the sequences of linear problems. The prob-
lem of a plane stress state (PStS) of a beam made
from the composite reinforced double-layered ma-
terial is being solved in dynamic elastic-plastic
mathematical model. The reinforced or armed ma-
terial consists of two layers: the upper (first) thin
layer of solid steel and the lower (second) main
layer of glass. This composite base is rigidly at-
tached to an absolutely hard half-space. Rigid adhe-
sion of the layers to each other is assumed. Glass is
a very strong and very fragile material at the same
time. The fragility of glass is due to the fact that
there are many microcracks on the surface, and
when a load is applied to the glass surface, these mi-
crocracks begin to grow and lead to the destruction
of glass products. If we glue or immobilize the tops
of microcracks on the surface, we will get a strong
reinforced armed material that will be lighter,
stronger and not subject to degradation of material
properties such as aging, corrosion and creep. The
impact process was modelled as a non-stationary
plane stress state problem with an even distributed
load in the contact area, which changes according to
a linear law. The fields of the Odquist parameter and
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normal stresses
were studied and compared to corresponding results
of plane strain (PSS) problem with the same mate-
rial of layers, same their thickness and size of the
contact area. The upper reinforcing layer of metal or
steel can be applied to the glass surface so that metal
or steel atoms penetrate deeply, fill microcracks and
bind their tops. The top layer can be quite thin.
Keywords: Plane, stress, impact, composite ma-

terial, armed material, reinforced material, elastic-
plastic, deformation.

INTRODUCTION

In [1 — 4], a new approach to solving the
plane stress problems of impact and nonstation-
ary interaction in the elastoplastic mathematical
formulation was developed. In this papers like
in non-stationary problems [5 — 7], the action of
the striker is replaced by a distributed load in
the contact area, which changes according to a
linear law. The contact area remains constant.
The developed elastoplastic formulation makes
it possible to solve impact problems when the
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dynamic change in the boundary of the contact
area is considered and based on this the move-
ment of the striker as a solid body with a change
in the penetration speed is taken into account.
Also, such an elastoplastic formulation makes it
possible to consider the hardening of the mate-
rial in the process of nonstationary and impact
interaction.

The solution of problems for composite cy-
lindrical shells [8], elastic half-space [9], elastic
layer [10], elastic rod [11, 12] were developed
using method of the influence functions [13].

In contrast from the work [14], in this paper,
we investigate the impact process of hard body
with plane area of its surface on the top of the
composite beam which consists first thin metal
layer and second main glass layer. In contrast
from the works [5 — 7], in this paper, the impact
process of hard body with plane area of its sur-
face on the top of the composite beam which
consists first thin metal layer and second main
glass layer was investigated as plane problem
of stress state in elastic-plastic mathematical
model. The fields of plastic deformations and,
stresses were determined relative to the size of
the area of initial contact.

PROBLEM FORMULATION

Deformations and their increments [15, 16],
Odquist parameter, effective and principal
stresses are obtained from the numerical solu-
tion of the dynamic elastic-plastic interaction
problem of infinite composite beam
{~L/2<x<L/2; 0Sy<B;—w0<z<ow} In
the plane of its cross section in the form of rec-
tangle. It is assumed that the stress-strain state
in each cross section of the cylinder is the same,
close to the plane deformation, and therefore it
is necessary to solve the equation for only one
section in the form of a rectangle X=LxB
with  two layers:  first steel layer
{-L/2<x<L/2;-0<z<w;B-h<y<B}
and second glass layer {~L/2<x<L/2;
0<y<B-h;—w<z<w} contacts absolute
hard half-space {y < 0}. We assume that the

contact between the lower surface of the first
metal layer and the upper surface of the second
glass layer is ideally rigid.
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From above on a body the absolutely rigid
drummer contacting along a segment {{x|< A;

y = B}. Its action is replaced by an even dis-

tributed stress in the contact region, which
changes over time as a linear function

P = po1+ Port . Given the symmetry of the de-

formation process relative to the line x=0,
only the right part of the cross section is consid-
ered below (Fig. 1). The calculations use known
methods for studying the quasi-static elastic-
plastic [16, 17 — 19] model, considering the
non-stationarity of the load and using numerical
integration implemented in the calculation of
the dynamic elastic model [1 — 4].

y
phdly
B-h |
i i X
A L2

Fig. 1. Geometric scheme of the problem

The equations of the plane dynamic theory
are considered, for which the components of the
displacement vector u = (uy,uy) are related to

the components of the strain tensor by Cauchy
relations:

ou, au, 1(éu, ou,
E = Ey = Ey =7 +—|
oX oy 2l oy ox

The equations of motion of the medium have
the form:

(1)

where p — material density.

The boundary and initial conditions of the
problem have the form:
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x=0,0<y<B:uy=0, gy =0,
x=L/2,0<y<B:ioy =0, oy =0,
y=0,0<x<L/2:uy=0, oy =0, 2
y=B, 0<x<A: oy, ==-P, gy, =0,

y=B, A<x<L/2: ayy=0, aXy=O.

=0, uy‘t=0=0, uZ|t

=0, uy\

Ulig =0 (3)

uX|t=o 0, uz|t

t=0

The determinant relations of the mechanical
model are based on the theory of non-isother-
mal plastic flow of the medium with hardening
under the condition of Huber-Mises fluidity.
The effects of creep and thermal expansion are
neglected. Then, considering the components of
the strain tensor by the sum of its elastic and

plastic components [19, 20], we obtain expres-
sion for them:

e
gij :gij +8in, dgijp = Sijdﬂ,,

(4)

1
Eﬁ =£Sij +KO'+¢.

here sj; = oyj — &jjo —stress tensor deviator; &j;
— Kronecker symbol; £ — modulus of elasticity
(Young's modulus); G — shear modulus;
Ki=(1-2v)/(3E), K=3K; - volumetric
compression modulus, which binds in the ratio
& = Ko + ¢ volumetric expansion 3¢ (thermal
expansion ¢ =0); o —mean stress; 04 —some
scalar function [16], which is determined by the
shape of the load surface and we assume that
this scalar function is quadratic function of the
stress deviator Sij [19, 20].

(0 (f=0f-cd(T)<0)
3d8ip

Oj
(f > 0—inadmissible)

dA =<

(f =0,df =0) , (5)

Transfer of Innovative Technologies
Vol.5, No.1 (2022), 71-80

deP =%[(dgxpx —defy)z +(defx -olgzlg)2 +

+(dzf, —dgg)z ; e(dgxpy)zl% ,
o= i((axx —O'yy)2 +(O'XX)2 +

2
% .

"'(ny)z + 60)%),)

The material is strengthened with a harden-
ing factor n* [1,2, 16 — 18]:

77*
o5 (T) = aozcro)(u@j ,
¢0 (6)
fo = JozE(To) |

where T — temperature; kK — Odquist parameter,
Tp=20°C, n* — hardening coefficient;
o5 (T) — yield strength after hardening of the

material at temperature 7.
Rewrite (4) in expanded form:

de, =d O-ch_so- + KG)-I— (o, —0o)dA,
o,—0
de, =d yéG +KG]+(GW—G)d;L, (7)

de,, =d ;fgjmxydz.

SOLUTION ALGORITHM

Let the nonstationary interaction [1 — 3, 15,
16] occur in a time interval t € [0, t«<] . Then for
every moment of time #:
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e _O-xx O-Y)’_O-
Ex =55 +K0' &y G + Ko,

GX e e e
=26 Fh = oy () (9)
485 (o _o192 dgy"y_( ~5)34
at =0 g g =0 =) g
deg dA
dty :O-xya’ gzg :_gxg(_g)?y'

For numerical integration over time, Grego-
ry's quadrature formula [21] of order my =3

with coefficients D, was used. After discretisa-

tion in time with nodes
t, =kAte[0,t«] (k=0,K) for each value k

we write down the corresponding node values
of deformation increments:

A‘C"xx,k = B10'xx,k + BZO'yy,k —Dbyx
Aé‘yy,k = BZGXX,k + Blo_yy,k —byy,

Agyy k = B30-xy,k - bxy’ (10)
A‘C"zzk=B4(Gxxk'*'6yy,k)_
—Agyy k —Asyy k — by,

11

B_3(K+G+2DA/1K)

11

82_3(K - DM)

B, =55+ DA,

_1-2v 1
B4_3(1—v)(2K+ZG)

bzz = B4(O-xx,k—1 + O-yy,k—l)’
1 1
bijZZG i k 1+5( ZG)O-kl

_Z D ( Ijk n— O-k—n)Aﬂ'k—n (I’ J 0 X, y)

n=|
The solution of the system (10) gives expres-

sions for the components of the stress tensor at
each step:
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k = A1A‘C"xx,k + AZA‘C"yy,k +Yxx’
= MAsLHAAE +Y,
k — AaAgxy,k +ny’
Yxx = Albxx + Azbyy’
Yyy = Aszx+A1byy1 (11)
A = Bl/(Blz_Bzz)l
A, =-B,(8; -B}),
ny = Asbxy’ AS :]7/83'

Function i =1/(2G) + A4, which is charac-
terizing the yield condition, taking into account

(8), (9), (11)1s:

-

1
— (f<0
G ( )
1 3A8ip
={— f =0,df =0), 12
V126" 20 ¢ 02
(f > 0—inadmissible)

AgP = g((Agx‘; —Ag) )2 + (Aexpx —-Asg) )2

+

2 2 }/
+(aey - aep) +6(ac) ),
Aey =Ae, —Agy,, Agp =Ag, —Agy,
Aey, =Ag, —Agy, Agy =—Agy, —Ag),

gt = 1 o, +(K—L)0'

XX !

%" 2G 2G

e 1 _ 1

£y =56 0W+(K ZG)G
gfy:%qy, oc=(c,to,)/3.

To take into account [15, 16] the physical
nonlinearity contained in conditions (12), the
method of successive approximations is used,
which makes it possible to reduce a nonlinear
problem to a sequence of linear problems
[16 —18]:
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1- ]
t//(n)p+2—Gp, if ojs <-Q,
l//(n+1) = ‘//(n), if —Q<ois <Q,
" O'i(n) _
G if o5 >Q,
os(T)
ois =™ —og (), (13)

where Q — the value of the largest deviation of
(n)

the stress intensity oj ’ in step n from the

strengthened yield strength; n — is the approxi-
mation number

The stresses and strains used above were de-
termined for each unit cell from the numerical

solution at each point in time t; = KAt .

NUMERICAL SOLUTION

The explicit scheme of the finite difference
method was used with a variable partitioning
step along the axes Ox (M elements) and Oy (N
elements). The step between the split points was
the smallest in the area of the layers contact and
at the boundaries of the computational domain.
Since the interaction process is fleeting, this did
not affect the accuracy in the first thin layer, ar-
eas near the boundaries, and the adequacy of the
contact interaction modelling.

The use of finite differences [21] with varia-
ble partition step for wave equations is justified
in [22], and the accuracy of calculations with an
error of no more than

O((Ax)2+(Ay)2+(At)2) where AX , Ay and

At — increments of variables: spatial x and y
and time ¢. A low rate of change in the size of
the steps of the partition mesh was ensured. The
time step was constant.

The resolving system of linear algebraic
equations with a banded symmetric matrix was
solved by the Gauss method according to the
Cholesky scheme.

Figs. 2 — 19 show the results of calculations
of two layers specimens with a hardening factor

of the material 5" =0,05. The first high layer
has made from hard steel. The second main low
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layer has made from quartz glass. Contact be-
tween two layers is an ideal. Calculations were
made at the following parameter values: tem-
perature T=50°C; L=60mm; B=10mm;
h=03mm; At=321.10%s; py =8MPa;
Pp; =10 MPa; M =62;N =100. The smallest
splitting step was 0,005 mm, and the largest 2,6
mm  (AXqyip =0,005 mm; Ay =0,01mm
(only the first layer); AXpax =2,6 mm;
AYmax = 0,65 mm).

Figs.2,5,8,11,14,17;3,6,9, 12, 15, 18; 4,
7, 10, 13, 16, 19 show the fields of the Odquist
parameter K , normal stresses oy, and oy at
times t =257-10°s, t,=3.82.10°%s and
t;= 5.13-10°° s, respectively.

From Figs. 2 — 7 it can be seen that in the
area under the contact zone the plastic defor-
mations are bigger and quicker in the case of

PStS and at the end of the process of non-sta-
tionary interaction, when the moment of time

t, they are of the higher degree.

Figs. 8 — 19 show that the highest stresses occur
in the upper layer of the metal and the process
of accumulation of plastic deformations is more
intense there. These Figs. show areas where the
normal stresses in layers are tensile. This is due
to the fact that compressive stresses arise in the
upper layer quickly and the contact between the
layers and the contact of the lower boundary of
the lower layer with an absolutely rigid base are
ideally rigid.

The summary plastic deformations at time
t, in the case of PStS are 30% greater than in

the case of PSS and the area where these plastic
deformations occur is slightly larger. At times

t, and 15, the area of plastic deformations in

the case of PSeS is located under the contact
zone, and the summary plastic deformations are
greater in magnitude than in the case of PSS by

32% and 98% at times {, and 1, respectively.
In the case of PStS, the large in absolute value
normal stresses O, and Oy arise in the area

under the contact zone. Moreover, the values of
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normal stresses O, in the case of PStS are less
in absolute value than the values in the case of
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PSS at the times 1, {, and 15, respectively, by
40%, 45% and 43%. The absolute values of nor-
mal stresses O, in the case of PStS are less

than the corresponding values in the case of
PSS at the same time points by 22%, 36% and
24%, respectively.

The PIeS simulates the process of impact on
a narrow strip of a two-layer base. In the case
of PSeS, plastic deformations grow much faster
than in the case of PSS.

CONCLUSIONS

The developed methodology of solving dy-
namic contact problems in an elastic-plastic dy-
namic mathematical formulation makes it pos-
sible to model the processes of impact, shock
and non-stationary contact interaction with the
elastic composite base more adequately. In this
work, the process of impact on a two-layers
base, consisting of an upper thin layer of metal
and a lower main layer of glass, is adequately
modelled and investigated. The fields of sum-
mary plastic deformations and normal stresses
arising in the base are calculated and compared
to the corresponding values from the corre-
sponding problem of plane strain state. The up-
per metal layer of the composite two-layer base
takes on the main load. The results obtained
make it possible to design the narrow strips of
new composite reinforced armed materials.
Such a two-layer reinforced composite material
can be used as a wide range of needs of modern
industry.
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3amaya o0 MI0CKOM /iepopMIUPOBAHHOM CO-
CTOSTHMY JIBYXCJIOIHOTO TeJia B THHAMHYECKOI
YIPYroIiacTHYecKOii MOCTAHOBKe

Braoucnae bozoanos

AnHoraumus. KommnosuTHbele Marepuanbl IIH-
POKO HCTOIB3YIOTCSI B MTPOMBINIIIEHHOCTH U OBITY.
Jlist pacdeTa U pa3pabOTKH KOMITO3UITHOHHBIX Ma-
TEPUAJIIOB HCIIONb3YETCA MHOMKECTBO Pa3JIMYHBIX
METOJIOB. YCIICIIHO UCIONB3YIOTCS PA3HbIE METOBI
pacueTra U MPOCKTUPOBAHUS TaKUX MaTEpHUaJIOB.
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B nanHoI cTaTee A1 IPOEKTUPOBAHMUS KOMIIO3UIIH-
OHHBIX U apMUPOBaHHBIX MaTe€pPHUaIOB HCIOJIb3Y-
€TCsI METOIMKA PEIICHUs] TMHAMUYECKUX KOHTaKT-
HBIX 3a7a4 B OoJiee TOYHOW YHPYroIUIacTHYECKOH
MaTeMaTHIeCcKou mocTanoBke. [ yaera ¢puznde-
CKOW HEJIMHEWHOCTH TIporecca aeopMupoBaHUs
HCTIONIB3YeTCsl METOJl MOCIeN0BaTeNbHBIX MPHOIIHU-
JKEHH, TO3BOJIAIOIINI CBECTU HEJTMHENHYIO 3a/1a4y
K PELICHUIO IOCIEeI0BAaTEIbHOCTH JMHEApU30BaH-
HBIX 3ajad. B paMkax JuHaMU4ecKoW ymnpyroruia-
CTHUYECKOM MaTeMaTH4YeCKOH MOJIENH pellaeTcs 3a-
nada o TiockoMm HampspbkeHHoM coctosanm (ITHC)
0aJIKy 13 KOMIIO3UIIMOHHOTO apMUPOBAHHOIO ABYX-
CIIOMfHOTO Marepuana. ApMHpPOBaHHBIM WIN yCH-
JIEHHBI MaTepual COCTOMUT M3 JBYX CIIOEB: BEpX-
Hero (TIEPBOTO) TOHKOTO CJIOS W3 TBEPAOU CTaIu U
HUKHETO (BTOPOr0) OCHOBHOTO CJIOSI U3 CTeKJIa. JTO
KOMIIO3UIIMOHHOE OCHOBaHHE JKECTKO CBSI3aHO ¢ a0-
COJIFOTHO TBEPABIM NosynpocTpancTBoM. [Ipenmo-
JlaraeTcs JKeCTKOE CLEIUIEHHE CIIOEB APYT K OPYTY.
Crekyio — o4eHb MPOYHBIN U B TO K€ BpeMs OueHb
XpYyIKHl MaTtepuain. XpyIlKOCTh CTEKJIa CBSI3aHA C
TEM, YTO Ha IOBEPXHOCTH HMMEETCS MHOXKECTBO
MUKPOTPEILUH, U TIPY IPUI0KEHUH Harpy3KHU K MO-
BEPXHOCTH CTEKJa 3TH MHUKPOTPEIINHbI HaYUHAIOT
pacTu ¥ NPUBOAAT K Pa3pyLICHUIO CTEKIISTHHBIX U3-
nenuit. Ecnu cknents wnm 3aduKCUpOBaThH Bep-
LIMHBI MUKPOTPELIMH Ha MOBEPXHOCTH, TO MOIY-
YUTCSl IPOYHBII apMUPOBAaHHBIN YCUICHHBIA MaTe-
pua, KOTOphIiA OyneT jerde, mpodHee W He Oymer
MIOJIBEP>KEH JeTpalallii CBOWCTB MaTepraia, TaKuX
KaK CTapeHHe, KOPPO3Hsl U IOJI3yUYECTb.

[Iponecc ynapa MomaenupoBaics Kak HeCTaluo-
HapHas 3ajjada O IJIOCKOM HampsHKeHHOM COCTOS-
HHUU C PaBHOMEPHO PAaCIpPEIECIICHHON HArpy3Kol B
00JIacTH KOHTaKTa, U3MEHSIOLIEHCA 110 TUHEHHOMY
3akoHy. [long 3HadueHmit mapamerpa OnkBUCTa U
HOpPMAaJbHBIX HAIPSDKEHUN W3y4YeHBl U COMOCTaB-
JICHBI C COOTBETCTBYIOIIMMH pe3yJbTaTaMU 3a/1a4u
o wiockoit nepopmaruu (I1J1C) ¢ Tem xe marepua-
JIOM CJIOEB, UX TOJILIMHON U pa3MEpOM KOHTAKTHOMN
miomaaku. Ha moBepxHOCTh CTeK/Ia MOXKHO HaHe-
CTU BEPXHUU apMUPYIOLIUHI CIOH U3 MeTajljia WIH
CTasy, 4TOOBl aTOMBI METaJlla WM CTaJH MPOHU-
KaJi TIyOOKO, 3alONHSIM MUKPOTPEUIUHBI U CBSI-
3BIBAJIM WX BEPIIWHBL. BepxHwmii ciI0ii MOXKET OBITH
JIOBOJIBHO TOHKHUM.

KmioueBble ciaoBa: Ilmockas nedopmanms,
yAap, KOMIIO3UTHBIE MaTepHallbl, apMHUPOBaHHBIC
Marepuaibl, OpOHUPOBaHHBIE MaTepHallbl, YIPYro-
miacTu4eckas, aedopMariusl.

Transfer of Innovative Technologies
Vol.5, No.1 (2022), 71-80



