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Abstract. This article examines the 

application of artificial intelligence 

technologies for optimizing energy 

consumption in smart residential complexes. 

The study analyzes contemporary approaches 

to implementing machine learning algorithms, 

neural networks, and predictive analytics for 

managing energy resources in multi-apartment 

buildings. The research demonstrates that AI-

driven systems can reduce energy consumption 

by 25-40% compared to traditional 

management methods. The article presents a 

comprehensive analysis of architectures for 

intelligent energy management systems, 

including integration with Internet of Things 

sensors, smart meters, and building automation 

systems. Particular attention is given to 

machine learning methods for forecasting 

energy demand, optimizing heating, 

ventilation, and air conditioning systems, and 

managing renewable energy sources. The study 

examines challenges associated with 

implementing AI solutions, including data 

privacy, system integration complexity, and the 

need for substantial initial investments. The 

results show that deep learning algorithms 

demonstrate the highest efficiency in predicting 

consumption patterns, while reinforcement 

learning methods are most effective for real-

time optimization. The article also discusses the 

economic feasibility of implementing such 

systems, demonstrating payback periods of 3-5 

years depending on building size and climatic 

conditions. Recommendations are provided for 

developers, building managers, and 

policymakers regarding the implementation of 

AI-based energy management systems in 

residential complexes. 
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INTRODUCTION 

 

The global energy crisis and increasing 

environmental concerns have made energy 

efficiency in residential buildings a critical 

priority for sustainable urban development. 

Residential buildings account for 

approximately 30-40% of total energy 

consumption in developed countries, with 

significant potential for optimization through 

intelligent management systems (International 

Energy Agency, 2023). Traditional energy 

management approaches rely on predetermined 

schedules and manual adjustments, which fail 

to account for dynamic occupancy patterns, 

weather variations, and individual user 

preferences. 

The emergence of artificial intelligence 

technologies, combined with the proliferation 

of Internet of Things (IoT) devices and smart 

sensors, has created unprecedented 

opportunities for optimizing energy 

consumption in residential complexes. AI-

driven systems can analyze vast amounts of 

data from multiple sources, identify complex 

patterns, and make real-time decisions to 
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minimize energy waste while maintaining 

occupant comfort (Zhang et al., 2022). These 

technologies enable predictive maintenance, 

demand forecasting, and automated control of 

heating, ventilation, air conditioning (HVAC), 

lighting, and other building systems. 

Smart residential complexes equipped 

with AI-based energy management systems 

represent the convergence of several 

technological domains: machine learning 

algorithms, IoT infrastructure, cloud 

computing, and building automation systems. 

Recent studies indicate that implementing such 

integrated solutions can reduce energy 

consumption by 25-40% while simultaneously 

improving occupant comfort and reducing 

operational costs (Marinakis et al., 2023). 

However, the successful deployment of these 

systems requires addressing multiple 

challenges, including data privacy concerns, 

integration complexity, high initial costs, and 

the need for continuous system adaptation. 

The significance of this research lies in 

its comprehensive examination of AI 

technologies specifically tailored for residential 

energy optimization, as opposed to commercial 

or industrial applications. Residential buildings 

present unique challenges due to diverse 

occupancy patterns, varying user behaviors, 

and the need to balance energy efficiency with 

individual comfort preferences. Understanding 

how AI can effectively address these challenges 

is essential for achieving significant reductions 

in residential energy consumption and 

associated carbon emissions. 

 

PURPOSE AND METHODS 

 

The primary purpose of this research is to 

analyze the effectiveness of AI-driven 

technologies for optimizing energy 

consumption in smart residential complexes 

and to provide practical recommendations for 

their implementation. Specific objectives 

include: (1) examining various AI algorithms 

and architectures suitable for residential energy 

management; (2) evaluating the performance of 

different machine learning approaches in 

predicting energy demand and optimizing 

system operations; (3) analyzing the economic 

feasibility and environmental impact of AI-

based energy management systems; and (4) 

identifying key challenges and barriers to 

widespread adoption. 

The research methodology employed a 

mixed-methods approach combining literature 

review, case study analysis, and simulation 

modeling. A systematic literature review was 

conducted analyzing 127 peer-reviewed articles 

published between 2019 and 2024, focusing on 

AI applications in residential energy 

management. Selection criteria included 

empirical studies with quantifiable energy 

savings, implementation details of AI 

algorithms, and peer-reviewed publications in 

indexed journals. The review utilized databases 

including IEEE Xplore, ScienceDirect, Scopus, 

and Web of Science. 

Case study analysis examined eight 

real-world implementations of AI-based energy 

management systems in residential complexes 

across Europe, North America, and Asia. These 

case studies were selected to represent diverse 

climatic conditions, building types, and 

occupancy patterns. Data collection involved 

reviewing technical documentation, analyzing 

performance metrics, and conducting structured 

interviews with system developers and building 

managers. Key performance indicators 

included energy savings percentage, payback 

period, system reliability, and occupant 

satisfaction scores. 

Simulation modeling was performed 

using MATLAB and Python-based frameworks 

to evaluate different AI algorithms under 

controlled conditions. The simulation 

environment incorporated realistic building 

models based on EnergyPlus, occupancy 

patterns derived from time-use surveys, 

weather data from meteorological databases, 

and equipment efficiency specifications from 

manufacturer data. Multiple AI algorithms were 

tested, including artificial neural networks 

(ANNs), convolutional neural networks 

(CNNs), long short-term memory (LSTM) 

networks, reinforcement learning agents, and 

hybrid approaches. Algorithm performance was 

evaluated using metrics such as prediction 

accuracy (RMSE, MAE), energy savings 

potential, computational efficiency, and 
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adaptability to changing conditions. 

Comparative analysis was conducted to 

assess the relative effectiveness of different AI 

approaches for specific energy management 

tasks. This included benchmarking against 

traditional rule-based control systems and 

evaluating the impact of different data 

preprocessing techniques, feature selection 

methods, and hyperparameter configurations. 

Statistical significance testing was applied to 

ensure the reliability of findings. 

 

RESULTS AND EXPLANATIONS 

 

The analysis of AI-driven energy 

optimization systems revealed several key 

findings regarding algorithm performance, 

system architecture, and practical 

implementation outcomes. Deep learning 

algorithms, particularly LSTM networks, 

demonstrated superior performance in 

predicting short-term and medium-term energy 

demand, achieving mean absolute percentage 

errors (MAPE) of 3-7% compared to 12-18% 

for traditional statistical methods (Ahmad et al., 

2024). This accuracy improvement directly 

translates to more effective energy management 

decisions and reduced waste. 

Reinforcement learning approaches showed 

exceptional effectiveness in real-time HVAC 

optimization, achieving 28-35% energy savings 

in tested environments. Q-learning and Deep Q-

Network (DQN) algorithms successfully 

learned optimal control policies by 

continuously interacting with building systems 

and adapting to changing conditions. A notable 

implementation in a 120-unit residential 

complex in Stockholm demonstrated annual 

energy cost reductions of €47,000 while 

maintaining thermal comfort within acceptable 

ranges (Eriksson & Lindholm, 2023). The 

system learned to pre-cool or pre-heat 

apartments during off-peak electricity hours, 

reducing peak demand charges and taking 

advantage of time-of-use tariffs. 

Hybrid AI architectures combining multiple 

algorithms produced the most comprehensive 

energy optimization results. A representative 

architecture integrates LSTM networks for 

demand forecasting, CNN-based occupancy 

detection, and reinforcement learning for 

control optimization. This multi-layered 

approach addresses different aspects of energy 

management simultaneously: prediction, 

pattern recognition, and decision-making. Case 

studies implementing hybrid systems reported 

average energy savings of 32-41% across 

various building types and climates (Patel & 

Singh, 2023). 

The integration of renewable energy sources 

with AI-based management systems emerged as 

particularly promising. Machine learning 

algorithms successfully predicted solar 

photovoltaic generation with 90-95% accuracy, 

enabling optimal battery charging strategies 

and minimizing grid dependency. In a pilot 

project involving 85 apartments in California, 

AI-coordinated solar-plus-storage systems 

achieved 68% energy self-sufficiency and 

reduced grid electricity consumption by 71% 

(Chen et al., 2024). The system learned to 

anticipate high-consumption periods and 

manage battery discharge accordingly, 

maximizing the utilization of locally generated 

renewable energy. 

Occupancy prediction using AI 

demonstrated a significant impact on energy 

savings. Computer vision algorithms analyzing 

camera feeds (with privacy protection) and 

sensor fusion techniques combining motion, 

CO2, and temperature sensors achieved 92-

97% accuracy in determining room-level 

occupancy. This enabled dynamic adjustment 

of heating, cooling, and lighting based on actual 

usage rather than fixed schedules, resulting in 

18-24% additional energy savings compared to 

schedule-based control (Liu et al., 2023). 

The economic analysis revealed that 

implementation costs vary substantially based 

on building size, existing infrastructure, and 

system sophistication. Initial investment ranges 

from €80-150 per apartment for basic AI-

enhanced control systems to €300-500 per 

apartment for comprehensive systems 

including extensive sensor networks and 

advanced analytics capabilities. However, 

energy cost savings typically result in payback 

periods of 3.2-5.8 years, with longer payback 

times in regions with lower electricity costs 

(Martinez & Rodriguez, 2024). 
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Challenges identified in real-world 

implementations include data quality issues, 

where 23-31% of installations experienced 

problems with sensor malfunction, 

communication failures, or data 

inconsistencies. System integration proved 

complex when retrofitting older buildings with 

legacy HVAC systems not designed for digital 

control. User acceptance emerged as a critical 

factor, with successful implementations 

involving occupant education programs and 

providing transparency regarding system 

operation and energy savings achieved. 

Privacy concerns regarding data collection 

represent a significant barrier to adoption. 

Effective implementations addressed these 

concerns through anonymization techniques, 

edge computing for local data processing, and 

transparent data governance policies. In one 

study, 78% of initially hesitant residents 

accepted the system after receiving detailed 

explanations of data protection measures 

(Brown & Wilson, 2023). 

The analysis of algorithm computational 

requirements revealed that while deep learning 

models require significant training resources, 

their inference computational needs are modest 

enough for deployment on standard building 

management hardware. Edge computing 

architectures, where AI processing occurs 

locally rather than in the cloud, demonstrated 

faster response times and enhanced reliability, 

though at higher hardware costs. 

 

CONCLUSIONS AND 

RECOMMENDATIONS 

 

The research conclusively demonstrates that 

AI-driven optimization systems can achieve 

substantial energy savings in residential 

complexes, with typical reductions of 25-40% 

compared to traditional management 

approaches. Deep learning algorithms, 

particularly LSTM networks, excel at demand 

prediction, while reinforcement learning proves 

most effective for real-time system control. 

Hybrid architectures combining multiple AI 

approaches deliver optimal results by 

addressing different aspects of energy 

management simultaneously. 

Several key conclusions emerge from this 

analysis: 

First, the economic feasibility of AI-based 

energy management systems is established, 

with payback periods of 3-6 years justifying the 

initial investment for most residential 

applications. The business case strengthens in 

regions with high energy costs, significant 

heating or cooling requirements, and 

availability of time-of-use electricity tariffs. 

Building managers and developers should 

prioritize implementations in larger complexes 

where economies of scale reduce per-unit costs. 

Second, system integration represents the 

primary technical challenge, particularly in 

retrofit applications. Successful 

implementations require careful planning, 

phased deployment approaches, and 

collaboration between AI specialists, building 

automation experts, and facility managers. New 

construction projects should incorporate AI-

ready infrastructure from the design phase, 

including comprehensive sensor networks, 

digital control interfaces, and adequate 

computing resources. 

Third, occupant engagement and acceptance 

are critical success factors. Implementations 

must address privacy concerns through 

transparent data governance, provide occupants 

with visibility into energy savings, and allow 

individual preference settings within system 

optimization constraints. Educational programs 

explaining system benefits and operation 

significantly improve acceptance rates. 

Fourth, data quality and system reliability 

require ongoing attention. Implementing 

redundant sensors, automated anomaly 

detection, and regular maintenance protocols 

ensures consistent performance. Machine 

learning models require periodic retraining to 

adapt to changing occupancy patterns, weather 

conditions, and equipment characteristics. 

The following recommendations are 

proposed for stakeholders: 

For developers and building managers: 

Conduct detailed feasibility studies evaluating 

building characteristics, energy costs, and 

occupancy patterns before system selection. 

Implement phased approaches beginning with 

high-impact areas such as HVAC and lighting. 
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Establish performance monitoring systems to 

track energy savings and system reliability. 

Invest in occupant education and engagement 

programs to maximize system acceptance and 

effectiveness. 

For policymakers: Develop incentive 

programs supporting AI-based energy 

management system adoption, particularly in 

existing building stock where retrofitting 

challenges are greatest. Establish data privacy 

guidelines specifically addressing smart 

building applications. Support research and 

development of standardized communication 

protocols facilitating system integration. 

Consider incorporating AI-based energy 

management as a component of building energy 

codes and green building certification 

programs. 

For researchers: Continue developing more 

efficient algorithms reducing computational 

requirements and training data needs. 

Investigate federated learning approaches 

enabling collaborative model development 

while preserving data privacy. Explore transfer 

learning techniques allowing models trained on 

one building to be adapted for others with 

minimal additional data. Develop more 

sophisticated occupant behavior models 

improving comfort prediction and 

personalization capabilities. 

For technology vendors: Focus on 

developing user-friendly interfaces accessible 

to non-technical building managers. Create 

modular, scalable solutions allowing gradual 

system expansion as budgets permit. Ensure 

compatibility with diverse equipment 

manufacturers through open protocols and 

APIs. Provide comprehensive training and 

support services facilitating successful 

implementations. 

The transition to AI-driven energy 

management in residential complexes 

represents a significant opportunity for 

advancing sustainability goals while providing 

tangible economic benefits. As AI technologies 

continue advancing and costs decline, these 

systems will become increasingly accessible 

and effective. The evidence presented 

demonstrates that the technology is mature 

enough for widespread adoption, with 

remaining barriers primarily relating to 

integration complexity, initial costs, and 

stakeholder education rather than fundamental 

technical limitations. 

Future developments will likely emphasize 

greater personalization, more sophisticated 

prediction capabilities, and improved 

integration with broader smart city 

infrastructure. The convergence of AI-based 

building management with electric vehicle 

charging, distributed energy resources, and grid 

demand response programs will create even 

greater optimization opportunities and energy 

savings potential. 
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АНОТАЦІЯ 

У даній статті досліджується 

застосування технологій штучного 

інтелекту для оптимізації 

енергоспоживання в розумних житлових 

комплексах. Дослідження аналізує сучасні 

підходи до впровадження алгоритмів 

машинного навчання, нейронних мереж та 

прогнозної аналітики для управління 

енергоресурсами в багатоквартирних 

будинках. Дослідження демонструє, що 

системи на основі штучного інтелекту 

можуть знизити енергоспоживання на 25-

40% порівняно з традиційними методами 

управління. Стаття представляє 

комплексний аналіз архітектур 



Information Technology 

 

Transfer of Innovative Technologies 
Vol. 9, No. 1 (2025),  

інтелектуальних систем управління 

енергоспоживанням, включаючи інтеграцію 

з датчиками Інтернету речей, розумними 

лічильниками та системами автоматизації 

будівель. Особлива увага приділяється 

методам машинного навчання для 

прогнозування енергетичного попиту, 

оптимізації систем опалення, вентиляції та 

кондиціювання повітря, а також управління 

відновлюваними джерелами енергії. 

Дослідження розглядає виклики, пов'язані з 

впровадженням рішень на основі штучного 

інтелекту, включаючи конфіденційність 

даних, складність інтеграції систем та 

потребу в значних початкових інвестиціях. 

Результати показують, що алгоритми 

глибокого навчання демонструють найвищу 

ефективність у прогнозуванні моделей 

споживання, тоді як методи навчання з 

підкріпленням є найбільш ефективними для 

оптимізації в режимі реального часу. Стаття 

також обговорює економічну доцільність 

впровадження таких систем, демонструючи 

періоди окупності 3-5 років залежно від 

розміру будівлі та кліматичних умов. 

Надано рекомендації для забудовників, 

керуючих будівлями та розробників 

політики щодо впровадження систем 

управління енергоспоживанням на основі 

штучного інтелекту в житлових комплексах. 


