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Abstract. This article examines the
application of artificial intelligence
technologies for optimizing energy

consumption in smart residential complexes.
The study analyzes contemporary approaches
to implementing machine learning algorithms,
neural networks, and predictive analytics for
managing energy resources in multi-apartment
buildings. The research demonstrates that Al-
driven systems can reduce energy consumption
by 25-40% compared to traditional
management methods. The article presents a
comprehensive analysis of architectures for
intelligent energy management systems,
including integration with Internet of Things
sensors, smart meters, and building automation
systems. Particular attention is given to
machine learning methods for forecasting
energy demand, optimizing  heating,
ventilation, and air conditioning systems, and
managing renewable energy sources. The study
examines  challenges  associated  with
implementing Al solutions, including data
privacy, system integration complexity, and the
need for substantial initial investments. The
results show that deep learning algorithms
demonstrate the highest efficiency in predicting
consumption patterns, while reinforcement
learning methods are most effective for real-
time optimization. The article also discusses the
economic feasibility of implementing such
systems, demonstrating payback periods of 3-5
years depending on building size and climatic
conditions. Recommendations are provided for
developers, building managers, and

policymakers regarding the implementation of
Al-based energy management systems in
residential complexes.
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INTRODUCTION

The global energy crisis and increasing
environmental concerns have made energy
efficiency in residential buildings a critical
priority for sustainable urban development.
Residential buildings account for
approximately 30-40% of total energy
consumption in developed countries, with
significant potential for optimization through
intelligent management systems (International
Energy Agency, 2023). Traditional energy
management approaches rely on predetermined
schedules and manual adjustments, which fail
to account for dynamic occupancy patterns,
weather variations, and individual user
preferences.

The emergence of artificial intelligence
technologies, combined with the proliferation
of Internet of Things (IoT) devices and smart
Sensors, has created  unprecedented
opportunities for  optimizing energy
consumption in residential complexes. Al-
driven systems can analyze vast amounts of
data from multiple sources, identify complex
patterns, and make real-time decisions to
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minimize energy waste while maintaining
occupant comfort (Zhang et al., 2022). These
technologies enable predictive maintenance,
demand forecasting, and automated control of
heating, ventilation, air conditioning (HVAC),
lighting, and other building systems.

Smart residential complexes equipped
with Al-based energy management systems

represent the convergence of several
technological domains: machine learning
algorithms,  IoT  infrastructure, cloud

computing, and building automation systems.
Recent studies indicate that implementing such
integrated solutions can reduce energy
consumption by 25-40% while simultaneously
improving occupant comfort and reducing
operational costs (Marinakis et al., 2023).
However, the successful deployment of these
systems  requires  addressing  multiple
challenges, including data privacy concerns,
integration complexity, high initial costs, and
the need for continuous system adaptation.

The significance of this research lies in
its comprehensive examination of Al
technologies specifically tailored for residential
energy optimization, as opposed to commercial
or industrial applications. Residential buildings
present unique challenges due to diverse
occupancy patterns, varying user behaviors,
and the need to balance energy efficiency with
individual comfort preferences. Understanding
how Al can effectively address these challenges
is essential for achieving significant reductions
in residential energy consumption and
associated carbon emissions.

PURPOSE AND METHODS

The primary purpose of this research is to
analyze the effectiveness of Al-driven
technologies for optimizing energy
consumption in smart residential complexes
and to provide practical recommendations for
their implementation. Specific objectives
include: (1) examining various Al algorithms
and architectures suitable for residential energy
management; (2) evaluating the performance of
different machine learning approaches in
predicting energy demand and optimizing
system operations; (3) analyzing the economic

feasibility and environmental impact of Al-
based energy management systems; and (4)
identifying key challenges and barriers to
widespread adoption.

The research methodology employed a
mixed-methods approach combining literature
review, case study analysis, and simulation
modeling. A systematic literature review was
conducted analyzing 127 peer-reviewed articles
published between 2019 and 2024, focusing on

Al  applications in residential energy
management. Selection criteria included
empirical studies with quantifiable energy
savings, implementation details of Al

algorithms, and peer-reviewed publications in
indexed journals. The review utilized databases
including IEEE Xplore, ScienceDirect, Scopus,
and Web of Science.

Case study analysis examined eight
real-world implementations of Al-based energy
management systems in residential complexes
across Europe, North America, and Asia. These
case studies were selected to represent diverse
climatic conditions, building types, and
occupancy patterns. Data collection involved
reviewing technical documentation, analyzing
performance metrics, and conducting structured
interviews with system developers and building
managers. Key performance indicators
included energy savings percentage, payback
period, system reliability, and occupant
satisfaction scores.

Simulation modeling was performed
using MATLAB and Python-based frameworks
to evaluate different AI algorithms under
controlled  conditions. =~ The  simulation
environment incorporated realistic building
models based on EnergyPlus, occupancy
patterns derived from time-use surveys,
weather data from meteorological databases,
and equipment efficiency specifications from
manufacturer data. Multiple Al algorithms were
tested, including artificial neural networks
(ANNs), convolutional neural networks
(CNNs), long short-term memory (LSTM)
networks, reinforcement learning agents, and
hybrid approaches. Algorithm performance was
evaluated using metrics such as prediction
accuracy (RMSE, MAE), energy savings
potential, computational efficiency, and
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adaptability to changing conditions.

Comparative analysis was conducted to
assess the relative effectiveness of different Al
approaches for specific energy management
tasks. This included benchmarking against
traditional rule-based control systems and
evaluating the impact of different data
preprocessing techniques, feature selection
methods, and hyperparameter configurations.
Statistical significance testing was applied to
ensure the reliability of findings.

RESULTS AND EXPLANATIONS

The analysis of Al-driven energy
optimization systems revealed several key
findings regarding algorithm performance,
system architecture, and practical
implementation outcomes. Deep learning
algorithms, particularly LSTM networks,
demonstrated  superior  performance in
predicting short-term and medium-term energy
demand, achieving mean absolute percentage
errors (MAPE) of 3-7% compared to 12-18%
for traditional statistical methods (Ahmad et al.,
2024). This accuracy improvement directly
translates to more effective energy management
decisions and reduced waste.

Reinforcement learning approaches showed
exceptional effectiveness in real-time HVAC
optimization, achieving 28-35% energy savings
in tested environments. Q-learning and Deep Q-
Network (DQN) algorithms successfully
learned  optimal  control  policies by
continuously interacting with building systems
and adapting to changing conditions. A notable
implementation in a 120-unit residential
complex in Stockholm demonstrated annual
energy cost reductions of €47,000 while
maintaining thermal comfort within acceptable
ranges (Eriksson & Lindholm, 2023). The
system learned to pre-cool or pre-heat
apartments during off-peak electricity hours,
reducing peak demand charges and taking
advantage of time-of-use tariffs.

Hybrid Al architectures combining multiple
algorithms produced the most comprehensive
energy optimization results. A representative
architecture integrates LSTM networks for
demand forecasting, CNN-based occupancy

detection, and reinforcement learning for
control optimization. This multi-layered
approach addresses different aspects of energy
management  simultaneously:  prediction,
pattern recognition, and decision-making. Case
studies implementing hybrid systems reported
average energy savings of 32-41% across
various building types and climates (Patel &
Singh, 2023).

The integration of renewable energy sources
with Al-based management systems emerged as
particularly promising. Machine learning
algorithms  successfully predicted solar
photovoltaic generation with 90-95% accuracy,
enabling optimal battery charging strategies
and minimizing grid dependency. In a pilot
project involving 85 apartments in California,
Al-coordinated solar-plus-storage  systems
achieved 68% energy self-sufficiency and
reduced grid electricity consumption by 71%
(Chen et al., 2024). The system learned to
anticipate  high-consumption periods and
manage battery discharge accordingly,
maximizing the utilization of locally generated
renewable energy.

Occupancy prediction using Al
demonstrated a significant impact on energy
savings. Computer vision algorithms analyzing
camera feeds (with privacy protection) and
sensor fusion techniques combining motion,
CO2, and temperature sensors achieved 92-
97% accuracy in determining room-level
occupancy. This enabled dynamic adjustment
of heating, cooling, and lighting based on actual
usage rather than fixed schedules, resulting in
18-24% additional energy savings compared to
schedule-based control (Liu et al., 2023).

The economic analysis revealed that
implementation costs vary substantially based
on building size, existing infrastructure, and
system sophistication. Initial investment ranges
from €80-150 per apartment for basic Al-
enhanced control systems to €300-500 per
apartment  for  comprehensive  systems
including extensive sensor networks and
advanced analytics capabilities. However,
energy cost savings typically result in payback
periods of 3.2-5.8 years, with longer payback
times in regions with lower electricity costs
(Martinez & Rodriguez, 2024).
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Challenges  identified in  real-world
implementations include data quality issues,
where 23-31% of installations experienced
problems with sensor malfunction,
communication failures, or data
inconsistencies. System integration proved
complex when retrofitting older buildings with
legacy HVAC systems not designed for digital
control. User acceptance emerged as a critical
factor, with successful implementations
involving occupant education programs and
providing transparency regarding system
operation and energy savings achieved.

Privacy concerns regarding data collection
represent a significant barrier to adoption.
Effective implementations addressed these
concerns through anonymization techniques,
edge computing for local data processing, and
transparent data governance policies. In one
study, 78% of initially hesitant residents
accepted the system after receiving detailed
explanations of data protection measures
(Brown & Wilson, 2023).

The analysis of algorithm computational
requirements revealed that while deep learning
models require significant training resources,
their inference computational needs are modest
enough for deployment on standard building
management hardware. Edge computing
architectures, where Al processing occurs
locally rather than in the cloud, demonstrated
faster response times and enhanced reliability,
though at higher hardware costs.

CONCLUSIONS AND
RECOMMENDATIONS

The research conclusively demonstrates that
Al-driven optimization systems can achieve
substantial energy savings in residential
complexes, with typical reductions of 25-40%
compared to  traditional = management
approaches. Deep learning algorithms,
particularly LSTM networks, excel at demand
prediction, while reinforcement learning proves
most effective for real-time system control.
Hybrid architectures combining multiple Al
approaches deliver optimal results by
addressing  different aspects of energy
management simultaneously.

Several key conclusions emerge from this
analysis:

First, the economic feasibility of Al-based
energy management systems is established,
with payback periods of 3-6 years justifying the
initial investment for most residential
applications. The business case strengthens in
regions with high energy costs, significant
heating or cooling requirements, and
availability of time-of-use electricity tariffs.
Building managers and developers should
prioritize implementations in larger complexes
where economies of scale reduce per-unit costs.

Second, system integration represents the
primary technical challenge, particularly in

retrofit applications. Successful
implementations require careful planning,
phased  deployment  approaches, and

collaboration between Al specialists, building
automation experts, and facility managers. New
construction projects should incorporate Al-
ready infrastructure from the design phase,
including comprehensive sensor networks,
digital control interfaces, and adequate
computing resources.

Third, occupant engagement and acceptance
are critical success factors. Implementations
must address privacy concerns through
transparent data governance, provide occupants
with visibility into energy savings, and allow
individual preference settings within system
optimization constraints. Educational programs
explaining system benefits and operation
significantly improve acceptance rates.

Fourth, data quality and system reliability
require ongoing attention. Implementing
redundant  sensors, automated anomaly
detection, and regular maintenance protocols
ensures consistent performance. Machine
learning models require periodic retraining to
adapt to changing occupancy patterns, weather
conditions, and equipment characteristics.

The following recommendations are
proposed for stakeholders:

For developers and building managers:
Conduct detailed feasibility studies evaluating
building characteristics, energy costs, and
occupancy patterns before system selection.
Implement phased approaches beginning with
high-impact areas such as HVAC and lighting.
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Establish performance monitoring systems to
track energy savings and system reliability.
Invest in occupant education and engagement
programs to maximize system acceptance and
effectiveness.

For policymakers: Develop incentive
programs  supporting  Al-based  energy
management system adoption, particularly in
existing building stock where retrofitting
challenges are greatest. Establish data privacy
guidelines  specifically addressing smart
building applications. Support research and
development of standardized communication
protocols facilitating system integration.
Consider incorporating Al-based energy
management as a component of building energy
codes and green building certification
programs.

For researchers: Continue developing more
efficient algorithms reducing computational
requirements and training data needs.
Investigate federated learning approaches
enabling collaborative model development
while preserving data privacy. Explore transfer
learning techniques allowing models trained on
one building to be adapted for others with
minimal additional data. Develop more
sophisticated occupant behavior models
improving comfort prediction and
personalization capabilities.

For technology vendors: Focus on
developing user-friendly interfaces accessible
to non-technical building managers. Create
modular, scalable solutions allowing gradual
system expansion as budgets permit. Ensure
compatibility ~ with  diverse = equipment
manufacturers through open protocols and
APIs. Provide comprehensive training and

support  services facilitating  successful
implementations.

The transition to Al-driven energy
management in  residential  complexes

represents a significant opportunity for
advancing sustainability goals while providing
tangible economic benefits. As Al technologies
continue advancing and costs decline, these
systems will become increasingly accessible
and effective. The evidence presented
demonstrates that the technology is mature
enough for widespread adoption, with

remaining barriers primarily relating to
integration complexity, initial costs, and
stakeholder education rather than fundamental
technical limitations.

Future developments will likely emphasize
greater personalization, more sophisticated
prediction  capabilities, and  improved
integration ~ with  broader smart city
infrastructure. The convergence of Al-based
building management with electric vehicle
charging, distributed energy resources, and grid
demand response programs will create even
greater optimization opportunities and energy
savings potential.
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AHOTALIA
Y TaHIA CTaTTl JTOCITIJIKYE€THCSI
3aCTOCYBaHHS TEXHOJIOT1H! HITYYHOTO
IHTETIEKTY JUISt onTuMizamii

€HEepProcloXKMBaHHA B PO3YMHHUX JKUTJIOBHX
KoMIUIeKkcax. JlocnmipkeHHs aHali3ye cydyacHl
HOiAXOMM 0  BOPOBADKEHHS  aJTOPUTMIB
MAIIMHHOTO HABYaHHS, HEHPOHHUX MEPEX Ta
NPOTHO3HOI ~ AHANITHUKU  JUIs  yNpaBIiHHSA
€Hepropecypcammu B 0araToKBapTHPHHUX
Oyaunkax. JlocnmipkeHHS JEMOHCTPYE, IO
CUCTEMH Ha OCHOBI IITY4YHOTO 1HTENEKTY
MOXYTh 3HU3UTH EHEPrOCIOXHBAaHHS Ha 25-
40% TIOPIBHSHO 3 TPAJAUIIMHUMH METOAAMHU
yTpaBIIiHHS. Cratts IpeCTaBIIsie
KOMIUIEKCHUH aHasi3 apXIiTEKTyp
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IHTENEKTyaTbHUX CUCTEM yIpaBIiHHSA
€HEeprocroXKMBaHHIM, BKIIIOUAIOUHU 1HTETpalliio
3 Jaryukamu [HTEpHETY pedel, pO3yMHHMH
JYUJIbHUKAMHU Ta CHCTEMaMHU aBTOMAaTH3allii
OyxmiBenb. OcoOnuBa yBara MNPHIUIIETHCS
METOJlaM  MAIIMHHOTO  HaBYaHHSA IS
MPOTHO3YBAHHS  C€HEPTeTUYHOTO  IOMHTY,
OIITHMI3alLlil CUCTEM ONAJICHHS, BEHTUJIALII Ta
KOH/IMIIFOBaHHS TOBITPS, a TAKOXK yIPaBIiHHS
BIJTHOBJIFOBAHUMHU JOKEpeaMu eHeprii.
JlocikeHHsT po3Tiisigae BUKIMKY, TOB'sI13aH1 3
BIIPOBA/KEHHSM pIllIeHb HAa OCHOBI IITY4YHOTO
IHTENeKTy, BKIIOYAalOUN KOH(]IIEHIIHHICTh
JMaHUX, CKJIAIHICTh IHTErpamii CcucTeM Ta
noTpedy B 3HAYHHUX MOYATKOBUX 1HBECTHIIISIX.
PesynpTatn moka3yioTh, IO  AITOPUTMHU
rIIMOOKOT0 HABYAHHSI IEMOHCTPYIOTh HAWBUIITY
epeKTUBHICTb Yy TPOTHO3YBaHHI Mojenei
CIIO)KUBaHHS, TOII SIK METOAM HaBYaHHS 3
M IKPIIUICHHSM € HAHOUTbIT €()eKTUBHUMH IS
ONITUMI3aIlil B peKuMi peasbHoro gacy. Crarrs
TaKoX OOTrOBOPIOE EKOHOMIYHY JOIUIBbHICTh
BIIPOBADKCHHS TaKUX CHUCTEM, JCMOHCTPYIOUH
nepiou OKYMHOCTI 3-5 pOKiB 3aJIeKHO BiJl
po3mipy OymiBiali Ta KIIMATHYHUX YMOB.
Hagano pexomenpmanii ans  3a0yJOBHHKIB,
Kepyrounx  OymiBISMH Ta  PO3POOHHKIB
MOJIITUKM ~ IIOJI0  BIOPOBAKEHHS  CHUCTEM
YOpPaBIIiHHSA €HEProcloXMBaHHSIM Ha OCHOBI
MITYYHOTO IHTENEKTY B )KUTIOBUX KOMIUJIEKCAX.
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