Waste Glass in Cement and Concretes: A Review on Characteristics and Challenges
DOI:
https://doi.org/10.32347/tit.2024.71.01.04Keywords:
waste glass, ASR, aggregate, durability, waste materials, glass powder, concrete, admixtures, cement replacement, partial replacementAbstract
Abstract. Every year, the world is producing around 100 million tons of waste glass (WG), the majority of them are going to landfills that create massive environmental problems. One approach to solve this problem is to transform waste glass into construction materials. Glass is recyclable; however, the melting temperature of the glass is highly dependent on its color that requires sorting before recycling. To overcome this challenge, many researchers and end-users are using broken glass in concrete either as a binder or aggregates. While significant investigations have done in this area, however, the outcomes of these studies are scattered, and difficult to reach a firm conclusion about the effectiveness of WG in concrete. In this study, the roles of WG and its impact on microstructural and durability properties for both cement and concrete are critically reviewed. This review reveals that the amorphous silica in WG effectively participate to the hydration and geopolymerization process and improve concrete microstructural properties. This behavior of WG help to produce durable concrete against shrinkage, chemical attack, freeze-thaw action. The optimum replacement volume of binders or natural aggregates and particle size of WG need to be selected carefully to minimize the possible alkali-silica reaction. This review discusses a wide range of parameters for durability properties and challenges associated with WG concrete, which provides necessary guidelines for best practice with future research directions
References
REFERENCES
Bahoria B.V., Parbat D.K., Nagarnaik P.B. Materials Today: Proceedings. Volume 5. Elsevier; Amsterdam, The Netherlands: 2018. XRD Analysis of Natural sand, Quarry dust, waste plastic (ldpe) to be used as a fine aggre-gate in concrete; pp. 1432–1438. [Google Scholar]
Islam M.T., Islam M., Siddika A., Mamun M.A.
Al Performance of rubberized concrete exposed to chloride solution and continuous wet–dry cy-cle. Innov. Infrastruct. Solut. 2021;6:67. doi: 10.1007/s41062-020-00451-3. [CrossRef] [Google Scholar]
Siddika A., Amin M.R., Rayhan M.A., Is-lam M.S., Al Mamun M.A., Alyousef R., Amran Y.H.M.
Performance of sustainable green concrete in-corporated with fly ash rice husk ash and stone dust. Acta Polytech. 2021;61:279–291. doi: 10.14311/AP.2021.61.0279. [CrossRef] [Google Scholar]
Assaedi H., Alomayri T., Siddika A., Shaikh F., Alamri H., Subaer S., Low I.-M.
Effect of Nanosilica on Mechanical Properties and Microstructure of PVA Fiber-Reinforced Geopolymer Composite (PVA-FRGC) Materials. 2019;12:3624. doi: 10.3390/ma12213624. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Siddika A., Al Mamun M.A., Alyousef R., Mohammadhosseini H.
State-of-the-art-review on rice husk ash: A sup-plementary cementitious material in concrete. J. King Saud Univ. Eng. Sci. 2021;33:294–307.
doi:10.1016/j.jksues.2020.10.006.[CrossRef] [Google Scholar]
Luhar S., Cheng T.-W., Nicolaides D., Luhar I., Panias D., Sakkas K.
Valorisation of glass wastes for the development of geopolymer composites—Durability, thermal and microstructural properties: A review. Constr. Build. Mater.2019;222:673–687.
doi: 10.1016/j.conbuildmat.2019.06.169.
[CrossRef] [Google Scholar]
Burciaga-Díaz O., Durón-Sifuentes M., Díaz-Guillén J.A., Escalante-García J.I.
Effect of waste glass incorporation on the prop-erties of geopolymers formulated with low puri-ty metakaolin. Cem. Concr. Compos. 2020;107:103492. doi: 10.1016/j.cemconcomp.2019.103492. [Cross-Ref] [Google Scholar]
Siddika A., Al Mamun M.A., Ali M.H.
Study on concrete with rice husk ash. Innov. In-frastruct. Solut. 2018;3:18. doi: 10.1007/s41062-018-0127-6. [CrossRef] [Google Scholar]
Siddika A., Al Mamun M.A., Ferdous W., Saha A.K., Alyousef R.
D-printed concrete: Applications, performance, and challenges. J. Sustain. Cem. Mater. 2020;9:127–164.
doi: 10.1080/21650373.2019.1705199. [Cross-Ref] [Google Scholar]
Trends in Solid Waste Management. [(accessed on 14 May 2020)]. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html
Harder I.J.
Glass Recycling—Current Market Trends—Recovery. [(accessed on 5 April 2021)]. Availa-ble online: https://www.recovery-worldwide.com/en/artikel/glass-recycling-current-market-trends_3248774.html
What a Waste: Australia Needs to Con-front Recycling Crisis. [(accessed on 18 March 2020)].
Hama S.M., Mahmoud A.S., Yassen M.M.
Flexural behavior of reinforced concrete beam incorporating waste glass powder. Structures. 2019;20:510–518.
doi: 10.1016/j.istruc.2019.05.012. [CrossRef] [Google Scholar]
Jiang Y., Ling T.-C., Mo K.H., Shi C.
A critical review of waste glass powder—Multiple roles of utilization in cement-based materials and construction products. J. Environ. Manag. 2019;242:440–449. doi: 10.1016/j.jenvman.2019.04.098. [PubMed] [CrossRef] [Google Scholar]
Heriyanto E., Pahlevani F., Sahajwalla V. From waste glass to building materials—An innovative sustainable solution for waste glass. J. Clean. Prod. 2018;191:192–206. doi: 10.1016/j.jclepro.2018.04.214. [CrossRef] [Google Scholar]
Vafaei M., Allahverdi A.
Durability of Geopolymer Mortar Based on Waste-Glass Powder and Calcium Aluminate Cement in Acid Solutions. J. Mater. Civ. Eng. 2017;29:04017196. doi: 10.1061/(ASCE)MT.1943-5533.0002053. [CrossRef] [Google Scholar]
Al-Akhras N.M.
Performance of Glass Concrete Subjected to Freeze-Thaw Cycling. Open Constr. Build. Technol. J. 2012;6:392–397.
doi: 10.2174/1874836801206010392. [Cross-Ref] [Google Scholar]
Hajimohammadi A., Ngo T., Vongsvivut J. Interfacial chemistry of a fly ash geopolymer and aggregates. J. Clean. Prod. 2019;231:980–989. doi: 10.1016/j.jclepro.2019.05.249. [CrossRef] [Google Scholar]
Jubeh A.I., Al Saffar D.M., Tayeh B.A.
Effect of recycled glass powder on properties of cementitious materials contains styrene butadi-ene rubber. Arab. J. Geosci. 2019;12:39. doi: 10.1007/s12517-018-4212-0. [CrossRef] [Google Scholar]
Aliabdo A.A., Abd Elmoaty A.E.M., Aboshama A.Y. Utilization of waste glass powder in the production of cement and con-crete. Constr. Build. Mater. 2016;124:866–877. doi: 10.1016/j.conbuildmat.2016.08.016. [CrossRef] [Google Scholar]
Hajimohammadi A., Ngo T., Kashani A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. J. Clean. Prod. 2018;193:593–603. doi: 10.1016/j.jclepro.2018.05.086. [CrossRef] [Google Scholar]
Topçu İ.B., Canbaz M. Properties of concrete containing waste glass. Cem. Concr. Res. 2004;34:267–274. doi: 10.1016/j.cemconres.2003.07.003. [CrossRef] [Google Scholar]
Andiç-Çakır Ö., Üzüm O., Yüksel C., Sarikanat M. Waste glass aggregate for ce-mentitious and polymer concrete. Proc. Inst. Civ. Eng. Constr. Mater. 2016;169:106–116. doi: 10.1680/coma.15.00011. [CrossRef] [Google Scholar]
Williamson T., Juenger M.C.G.
The role of activating solution concentration on alkali–silica reaction in alkali-activated fly ash concrete. Cem. Concr. Res. 2016;83:124–130. doi: 10.1016/j.cemconres.2016.02.008. [Cross-Ref] [Google Scholar]
Hilton B., Bawden K., Winnebeck K., Chandrasiri C., Ariyachandra E., Peetham-paran S.
The functional and environmental performance of mixed cathode ray tubes and recycled glass as partial replacement for cement in concrete. Resour. Conserv. Recycl. 2019;151:104451. doi: 10.1016/j.resconrec.2019.104451. [Cross-Ref] [Google Scholar]
Si R., Dai Q., Guo S., Wang J.
Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopol-ymer with waste glass powder. J. Clean. Prod. 2020;242:118502. doi: 10.1016/j.jclepro.2019.118502. [CrossRef] [Google Scholar]
Lee H., Hanif A., Usman M., Sim J., Oh H. Performance evaluation of concrete incorpo-rating glass powder and glass sludge wastes as supplementary cementing material. J. Clean. Prod. 2018;170:683–693. doi: 10.1016/j.jclepro.2017.09.133. [CrossRef] [Google Scholar]
Paul S.C., Šavija B., Babafemi A.J.
A comprehensive review on mechanical and du-rability properties of cement-based materials containing waste recycled glass. J. Clean. Prod. 2018;198:891–906. doi: 10.1016/j.jclepro.2018.07.095. [CrossRef] [Google Scholar]
Federico L.M., Chidiac S.E.
Waste glass as a supplementary cementitious material in concrete—Critical review of treat-ment methods. Cem. Concr. Compos. 2009;31:606–610. doi: 10.1016/j.cemconcomp.2009.02.001. [Cross-Ref] [Google Scholar]
Kazmi D., Williams D.J., Serati M.
Waste glass in civil engineering applications—A review. Int. J. Appl. Ceram. Technol. 2020;17:529–554. doi: 10.1111/ijac.13434. [CrossRef] [Google Scholar]
Luhar S., Cheng T.-W., Nicolaides D., Luhar I., Panias D., Sakkas K.
Valorisation of glass waste for development of Geopolymer composites—Mechanical proper-ties and rheological characteristics: A review. Constr. Build. Mater. 2019;220:547–564. doi: 10.1016/j.conbuildmat.2019.06.041. [CrossRef] [Google Scholar]
Ling T.-C., Poon C.-S.
Use of recycled CRT funnel glass as fine aggre-gate in dry-mixed concrete paving blocks. J. Clean. Prod. 2014;68:209–215. doi: 10.1016/j.jclepro.2013.12.084. [CrossRef] [Google Scholar]
Arabi N., Meftah H., Amara H., Kebaïli O., Berredjem L.
Valorization of recycled materials in develop-ment of self-compacting concrete: Mixing recy-cled concrete aggregates—Windshield waste glass aggregates. Constr. Build. Mater. 2019;209:364–376. doi: 10.1016/j.conbuildmat.2019.03.024. [CrossRef] [Google Scholar]
Liu G., Florea M.V.A., Brouwers H.J.H. Characterization and performance of high volume recycled waste glass and ground granulated blast furnace slag or fly ash blended mortars. J. Clean. Prod. 2019;235:461–472. doi: 10.1016/j.jclepro.2019.06.334. [CrossRef] [Google Scholar]
Shi C., Wu Y., Riefler C., Wang H.
Characteristics and pozzolanic reactivity of glass powders. Cem. Concr. Res. 2005;35:987–993. doi: 10.1016/j.cemconres.2004.05.015. [CrossRef] [Google Scholar]
ASTM International . ACTM C 618-03 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International; West Con-shohocken, PA, USA: 2003. pp. 3–6. [Google Scholar]
Ismail Z.Z., AL-Hashmi E.A.
Recycling of waste glass as a partial replace-ment for fine aggregate in concrete. Waste Manag. 2009;29:655–659. doi: 10.1016/j.wasman.2008.08.012. [PubMed] [CrossRef] [Google Scholar]
Karamberi A., Moutsatsou A.
Participation of coloured glass cullet in cementi-tious materials. Cem. Concr. Compos. 2005;27:319–327. doi: 10.1016/j.cemconcomp.2004.02.021. [Cross-Ref] [Google Scholar]
Idir R., Cyr M., Tagnit-Hamou A.
Use of fine glass as ASR inhibitor in glass ag-gregate mortars. Constr. Build. Mater. 2010;24:1309–1312.
doi: 10.1016/j.conbuildmat.2009.12.030. [CrossRef] [Google Scholar]
Shao Y., Lefort T., Moras S., Rodriguez D. Studies on concrete containing ground waste glass. Cem. Concr. Res. 2000;30:91–100. doi: 10.1016/S0008-8846(99)00213-6. [CrossRef] [Google Scholar]
Du H., Tan K.H.
Properties of high volume glass powder con-crete. Cem. Concr. Compos. 2017;75:22–29. doi: 10.1016/j.cemconcomp.2016.10.010. [CrossRef] [Google Scholar]
He Z., Zhan P., Du S., Liu B., Yuan W. Creep behavior of concrete containing glass powder. Compos. Part B Eng. 2019;166:13–20.
doi: 10.1016/j.compositesb.2018.11.133. [CrossRef] [Google Scholar]
Islam G.M.S., Rahman M.H., Kazi N. Waste glass powder as partial replacement of cement for sustainable concrete practice. Int. J. Sustain. Built Environ. 2017;6:37–44. doi: 10.1016/j.ijsbe.2016.10.005. [CrossRef] [Google Scholar]
Mirzahosseini M., Riding K.A.
Effect of curing temperature and glass type on the pozzolanic reactivity of glass powder. Cem. Concr. Res. 2014;58:103–111. doi: 10.1016/j.cemconres.2014.01.015. [CrossRef] [Google Scholar]
Hajimohammadi A., Ngo T., Kashani A. Sustainable one-part geopolymer foams with glass fines versus sand as aggregates. Constr. Build. Mater. 2018;171:223–231.
doi:10.1016/j.conbuildmat.2018.03.120. [CrossRef] [Google Scholar]
Menchaca-Ballinas L.E., Escalante-Garcia J.I.
Low CO2 emission cements of waste glass acti-vated by CaO and NaOH. J. Clean. Prod. 2019;239:117992.
doi: 10.1016/j.jclepro.2019.117992. [CrossRef] [Google Scholar]
Patel D., Shrivastava R., Tiwari R.P., Yadav R.K.
Properties of cement mortar in substitution with waste fine glass powder and environmental im-pact study. J. Build. Eng. 2020;27:100940. doi: 10.1016/j.jobe.2019.100940. [CrossRef] [Google Scholar]
Bignozzi M.C., Saccani A., Barbieri L., Lancellotti I.
Glass waste as supplementary cementing mate-rials: The effects of glass chemical composition. Cem. Concr. Compos. 2015;55:45–52.
doi: 10.1016/j.cemconcomp.2014.07.020. [CrossRef] [Google Scholar]
Zhu H., Chen W., Zhou W., Byars E.A.
Expansion behaviour of glass aggregates in dif-ferent testing for alkali-silica reactivity. Mater. Struct. 2009;42:485–494. doi: 10.1617/s11527-008-9396-4. [CrossRef] [Google Scholar]
Lee G., Ling T.C., Wong Y.L., Poon C.S. Effects of crushed glass cullet sizes, cast-ing methods and pozzolanic materials on ASR of concrete blocks. Constr. Build. Mater. 2011;25:2611–2618. doi: 10.1016/j.conbuildmat.2010.12.008. [CrossRef] [Google Scholar]
Corinaldesi V., Gnappi G., Moriconi G., Montenero A.
Reuse of ground waste glass as aggregate for mortars. Waste Manag. 2005;25:197–201.
doi: 10.1016/j.wasman.2004.12.009. [PubMed] [CrossRef] [Google Scholar]
Tamanna N., Tuladhar R., Sivakugan N. Performance of recycled waste glass sand as partial replacement of sand in concrete. Constr. Build. Mater. 2020;239:117804. doi: 10.1016/j.conbuildmat.2019.117804. [Cross-Ref] [Google Scholar]
Taha B., Nounu G.
Utilizing Waste Recycled Glass as Sand/Cement Replacement in Concrete. J. Mater. Civ. Eng. 2009;21:709–721. doi: 10.1061/(ASCE)0899-1561(2009)21:12(709). [CrossRef] [Google Scholar]
Kawamura M., Fuwa H.
Effects of lithium salts on ASR gel composition and expansion of mortars. Cem. Concr. Res. 2003;33:913–919.
doi: 10.1016/S0008-8846(02)01092-X. [Cross-Ref] [Google Scholar]
Mehta A., Ashish D.K.
Silica fume and waste glass in cement concrete production: A review. J. Build. Eng. 2020;29:100888.
doi: 10.1016/j.jobe.2019.100888. [CrossRef] [Google Scholar]
Olofinnade O.M., Ede A.N., Ndambuki J.M., Ngene B.U., Akinwumi I.I., Ofuyatan O. Strength and microstructure of eco-concrete produced using waste glass as partial and com-plete replacement for sand. Cogent Eng. 2018;5:1483860.
doi: 10.1080/23311916.2018.1483860. [CrossRef] [Google Scholar]
Lu J.-X., Poon C.S.
New Trends in Eco-Efficient and Recycled Concrete. Elsevier; Amsterdam, The Nether-lands: 2019. Recycling of waste glass in con-struction materials; pp. 153–167. [Google Scholar]
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.